Advertisements
Advertisements
प्रश्न
Which one of the following statements is incorrect in relation to ionization enthalpy?
पर्याय
Ionization enthalpy increases for each successive electron.
The greatest increase in ionization enthalpy is experienced on removal of electron from core noble gas configuration.
End of valence electrons is marked by a big jump in ionization enthalpy.
Removal of the electron from orbitals bearing lower n value is easier than from orbital having higher n value.
उत्तर
Removal of the electron from orbitals bearing lower n value is easier than from orbital having higher n value.
Explanation:
Electrons in orbitals bearing a lower n value are more attracted to the nucleus than electrons in orbitals bearing a higher n value. Hence, the removal of electrons from orbitals bearing a higher n value is easier than the removal of electrons from orbitals having a lower n value.
APPEARS IN
संबंधित प्रश्न
Energy of an electron in the ground state of the hydrogen atom is –2.18 × 10–18 J. Calculate the ionization enthalpy of atomic hydrogen in terms of J mol–1.
Hint: Apply the idea of mole concept to derive the answer.
Among the second period elements the actual ionization enthalpies are in the
order Li < B < Be < C < O < N < F < Ne.
Explain why O has lower ΔiH than N and F?
The first ionization enthalpy values (in kJmol–1) of group 13 elements are:-
B | Al | Ga | In | Tl |
801 | 577 | 579 | 558 | 589 |
How would you explain this deviation from the general trend?
Would you expect the first ionization enthalpies for two isotopes of the same element to be the same or different? Justify your answer.
Those elements impart colour to the flame on heating in it, the atoms of which require low energy for the ionisation (i.e., absorb energy in the visible region of spectrum). The elements of which of the following groups will impart colour to the flame?
(i) 2
(ii) 13
(iii) 1
(iv) 17
Among the elements \[\ce{B, Al, C}\] and \[\ce{Si}\], which element has the highest first ionisation enthalpy?
Nitrogen has positive electron gain enthalpy whereas oxygen has negative. However, oxygen has lower ionisation enthalpy than nitrogen. Explain.
Arrange the elements \[\ce{N, P, O}\] and \[\ce{S}\] in the order of increasing first ionisation enthalpy. Give reason for the arrangement assigned.
Explain the deviation in ionisation enthalpy of some elements from the general trend by using the given figure.
Explain the following:
Ionisation enthalpy decrease in a group from top to bottom?
Assertion (A): Generally, ionisation enthalpy increases from left to right in a period.
Reason (R): When successive electrons are added to the orbitals in the same principal quantum level, the shielding effect of inner core of electrons does not increase very much to compensate for the increased attraction of the electron to the nucleus.
Define ionisation enthalpy. Discuss the factors affecting ionisation enthalpy of the elements and its trends in the periodic table.
Discuss and compare the trend in ionisation enthalpy of the elements of group1 with those of group17 elements.
In general, the property (magnitudes only) that shows an opposite trend in comparison to other properties across a period is ______.
The decreasing order of the second ionization potential of K, Ca and Ba is ______.