मराठी

यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है। [संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।

[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]

बेरीज

उत्तर

माना धनात्मक पूर्णांक = a और b = 3

यूक्लिड विभाजन प्रक्रिया से a = 3q + r, q ≥ 0 और r = 0, 1, 2, क्योंकि 0 ≥ r < 3।

अतः a = 3q या 3q + 1 या 3q + 2

⇒ `a^2 = 3q^2, 3q + 1^2, 3q + 2^2`

= `9q^2, 9q^2 + 6q + 1, 9q^2 + 12q + 4`

= `3(3q^2), 3(3q^2 + 2q) + 1, 3(3q^2 + 4q) + 4`

= `3(3q^2), 3(3q^2 + 2q) + 1, 3(3q^2 + 4q + 1) + 1`

= `3p_1, 3p_2 + 1, 3p_3 + 1`

जहाँ `p_1, p_2, p_3` और धनात्मक पूर्णांक है। इसलिए प्रत्येक का वर्ग 3m या 3m + 1 के रूप में लिखा जा सकता है।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: वास्तविक संख्याएँ - प्रश्नावली 1.1 [पृष्ठ ८]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 10
पाठ 1 वास्तविक संख्याएँ
प्रश्नावली 1.1 | Q 4. | पृष्ठ ८

संबंधित प्रश्‍न

किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?


यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।


क्या प्रत्येक धनात्मक पूर्णांक 4q + 2 के रूप का हो सकता है, जहाँ q एक पूर्णाक है? अपने उत्तर का औचित्य दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का घन, किसी पूर्णांक m के लिए, 4m, 4m + 1 या 4m + 3 के रूप का होता है।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।


दर्शाइए कि किसी पूर्णांक q के लिए, किसी विषम पूर्णांक का वर्ग 4q+1 के रूप का होता है।


यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।


यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग करते हुए, ऐसी सबसे बड़ी संख्या ज्ञात कीजिए, जिससे 1251, 9377 और 15628 को भाग देने पर शेषफल क्रमशः 1, 2 और 3 प्राप्त हो।


सिद्ध कीजिए कि किन्हीं तीन क्रमागत धनात्मक पूर्णांकों में से एक पूर्णांक 3 से अवश्य ही विभाज्य होना चाहिए।


सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×