Advertisements
Advertisements
Question
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) बराबर है:
Options
0
1
2
-1
Solution
2
स्पष्टीकरण:
(1 + tan θ + sec θ) (1 + cot θ − cosec θ)
= `(1+ (sin theta)/(cos theta)+1/(costheta))(1+(costheta)/(sin theta)-1/(sin theta))`
= `((costheta+sintheta +1)/costheta)((sintheta+cos theta -1)/sintheta)`
= `((sintheta+costheta)^2-(1)^2)/(sinthetacostheta)`
= `(sin^2theta+cos^2 theta + 2sin theta cos theta -1)/(sinthetacostheta)`
= `(1+2sinthetacostheta -1)/(sinthetacostheta)`
= `(2sintheta costheta)/(sin theta costheta)`
= 2
अत: विकल्प 2 सही है।
APPEARS IN
RELATED QUESTIONS
मान निकालिए sin25° cos65° + cos25° sin65°
9 sec2 A − 9 tan2 A बराबर है:
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosec theta`
[संकेत: व्यंजक को sin θ और cosθ के पदों में लिखिए]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
`(1+ secA)/sec A = (sin^2A)/(1-cosA)`
[संकेत: वाम पक्ष और दायाँ पक्ष को अलग - अलग सरल कीजिए।]
निम्नलिखित सर्वसमिकाएँ को सिद्ध कीजिए, जहाँ वे कोण जिनके लिए व्यंजक परिभाषित किया गया है, न्यून कोण हैं:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
यदि sinA + sin2A = 1 है, तो व्यंजक (cos2A + cos4A) का मान ______ है।
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ है।
cos θ = `(a^2 + b^2)/(2ab)` है, जहाँ a और b ऐसी दो भिन्न संख्याएँ हैं कि ab > 0 है।
यदि cosec θ + cot θ = p है, तो सिद्ध कीजिए कि cos θ = `(p^2 - 1)/(p^2 + 1)` है।
सिद्ध कीजिए कि `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta` है।