Advertisements
Advertisements
Question
(2, 0), (–2, 0) आणि (0, 2) हे त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा. तसेच त्या त्रिकोणाचा प्रकार सकारण ठरवा.
Solution
समजा, P(2, 0), Q(–2, 0) आणि R(0, 2) हे दिलेले बिंदू आहेत.
दोन बिंदूंमधील अंतर = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
अंतराच्या सूत्रानुसार,
d(P, Q) = `sqrt([(-2) - 2]^2 + (0 - 0)^2)`
= `sqrt((-4)^2 + (0)^2)`
= `sqrt(16 + 0)`
= 4 ..............(i)
d(Q, R) = `sqrt([0 - (-2)]^2 + (2 - 0)^2)`
= `sqrt((2)^2 + (2)^2)`
= `sqrt(4 + 4)`
= `sqrt8` ................(ii)
d (P, R) = `sqrt((0 - 2)^2 + (2 - 0)^2)`
= `sqrt((-2)^2 + (2)^2)`
= `sqrt(4 + 4)`
= `sqrt8` ....................(iii)
(i) आणि (ii) ची बेरीज करून,
d(P, Q) + d(Q, R) = 4 + `sqrt8`
4 + `sqrt(8)` > `sqrt(8)`
∴ d(P, Q) + d(Q, R) > d(P, R)
∴ P, Q, R हे एकरेषीय बिंदू नाहीत.
तीन नैकरेषीय बिंदूंमधून त्रिकोण तयार होऊ शकतो.
∴ या दिलेल्या बिंदूंना जोडणाऱ्या रेषाखंडांपासून त्रिकोण तयार होतो. आता, d(Q, R) = d(P, R)
∴ ∆PQR समद्विभुज त्रिकोण आहे.
∴ (2, 0), (–2, 0) आणि (0, 2) हे समद्विभुज त्रिकोणाचे शिरोबिंदू आहेत.
APPEARS IN
RELATED QUESTIONS
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
खालील बिंदूंतील अंतर काढा.
P(-6, -3), Q(-1, 9)
A(7, 1), B(3, 5) आणि C(2, 0) शिरोबिंदू असलेल्या त्रिकोणाच्या परिवर्तुळाच्या केंद्राचे निर्देशक आणि परिवर्तुळाची त्रिज्या काढा.
A(4, -1), B(6, 0), C(7, -2) आणि D(5, -3) हे चौरसाचे शिरोबिंदू आहेत हे दाखवा.
जर P(2,1), Q(-1,3), R(-5,-3) आणि S(-2,-5) तर `square`PQRS हा आयत आहे हे दाखवा.
खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.
P(-2, -6) , Q(-4, -2), R(-5, 0)
बिंदू A(–3, 4) आणि आरंभबिंदू O यांमधील अंतर काढा.
A(7, 5) आणि B(2, 5) तर या दोन बिंदूंमधील अंतर किती?
जर बिंदू L(x, 7) आणि M(1, 15) या दोन बिंदूंमधील अंतर 10 असेल, तर x ची किंमत काढा.
सोबतच्या आकृतीत, दिलेल्या माहितीवरून त्रिकोणाच्या मध्यगेची लांबी काढण्यासाठी खालील कृती पूर्ण करा.
कृती: A(–1, 1), B(5, –3), C(3, 5) समजा, D(x, y)
मध्यबिंदू सूत्रानुसार,
x = `(5 + 3)/2` ∴ x = `square`
y = `(-3 + 5)/2` ∴ y = `square`
अंतराच्या सूत्रानुसार,
∴ AD = `sqrt((4 - square)^2 + (1 - 1)^2)`
∴ AD = `sqrt((square)^2 + (0)^2)`
∴ AD = `sqrtsquare`
∴ AD = `square`