Advertisements
Advertisements
Question
A(7, 1), B(3, 5) आणि C(2, 0) शिरोबिंदू असलेल्या त्रिकोणाच्या परिवर्तुळाच्या केंद्राचे निर्देशक आणि परिवर्तुळाची त्रिज्या काढा.
Solution
समजा, O(h, k) हा ΔABC च्या परिवर्तुळाचा केंद्र आहे.
OA = OC .......[एकाच वर्तुळाच्या त्रिज्या]
∴ `sqrt((h - 7)^2 + (k - 1)^2) = sqrt((h - 2)^2 + (k - 0)^2)` ....[अंतराच्या सूत्रानुसार]
∴ (h - 7)2 + (k - 1)2 = (h - 2)2 + (k - 0)2 ......[दोन्ही बाजूंचे वर्ग करून]
∴ h2 - 14h + 49 + k2 - 2k + 1 = h2 - 4h + 4 + k2
∴ 10h + 2k = 46
∴ 5h + k = 23 .....(i) [दोन्ही बाजूंना 2 ने भागून]
OB = OC .....[एकाच वर्तुळाच्या त्रिज्या]
∴ `sqrt((h - 3)^2 + (k - 5)^2) = sqrt((h - 2)^2 + (k - 0)^2)` ....[अंतराच्या सूत्रानुसार]
∴ (h - 3)2 + (k - 5)2 = (h - 2)2 + (k - 0)2 .....[दोन्ही बाजूंचे वर्ग करून]
∴ h2 - 6h + 9 + k2 - 10k + 25 = h2 - 4h + 4 + k2
∴ 2h + 10k = 30
∴ h + 5k = 15 .....(ii) [दोन्ही बाजूंना 2 ने भागून]
समीकरण (i) ला 5 ने गुणून,
25h + 5k = 115 …(iii)
समीकरण (iii) मधून (ii) वजा करून,
25h + 5k = 115
h + 5k = 15
- - -
24h = 100
∴ h = `100/24 = 25/6`
h ची किंमत समीकरण (i) मध्ये ठेवून,
5h + k = 23
∴ `5(25/6) + k = 23`
∴ k = 23 - `125/6 = (138 - 125)/6`
∴ k = `13/6`
∴ O(h, k) = `(25/6, 13/6)`
अंतराच्या सूत्रानुसार,
त्रिज्या = d(O, C) = `sqrt((25/6 - 2)^2 + (13/6 - 0)^2)`
= `sqrt(((25 - 12)/6)^2 + (13/6)^2)`
= `sqrt((13/6)^2 + (13/6)^2)`
= `sqrt(2(13/6)^2)`
= `(13sqrt(2))/6` एकक
∴ त्रिकोणाच्या परिवर्तुळाच्या केंद्राचे निर्देशक `(25/6, 13/6)` आहे व त्याची त्रिज्या `(13sqrt(2))/6` एकक आहे.
APPEARS IN
RELATED QUESTIONS
X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.
खालील बिंदूंतील अंतर काढा.
A(a, 0), B(0, a)
खालील बिंदूंतील अंतर काढा.
R(-3a, a), S(a, -2a)
P(6,-6), Q(3,-7) आणि R(3,3) यांतून जाणाऱ्या वर्तुळाच्या केंद्राचे निर्देशक काढा.
जर P(2,1), Q(-1,3), R(-5,-3) आणि S(-2,-5) तर `square`PQRS हा आयत आहे हे दाखवा.
बिंदू Q(3, –7) आणि बिंदू R(3, 3) आहेत, तर बिंदू Q आणि R मधील अंतर किती?
उकल:
समजा, Q(x1, y1) आणि बिंदू R(x2, y2)
x1 = 3, y1 = –7 आणि x2 = 3, y2 = 3
अंतराच्या सूत्रानुसार,
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrt(square - 100)`
d(Q, R) = `sqrtsquare`
∴ d(Q, R) = `sqrtsquare`
A(–4, –7), B(–1, 2), C(8, 5) आणि D(5, –4) हे चौकोनाचे शिरोबिंदू असतील, तर चौकोन ABCD हा समभुज चौकोन आहे हे दाखवा.
(0, –1), (8, 3), (6, 7) व (–2, 3) हे बिंदू आयताचे शिरोबिंदू आहेत हे दाखवा.
O केंद्र असलेल्या वर्तुळाची OA ही त्रिज्या आहे. जर A चे निर्देशक (0, 2) असतील तर बिंदू (1, 2) हा वर्तुळावर आहे किंवा नाही पडताळा घ्या.
O(0, 0) आणि P(3, 4) या दोन बिंदूतील अंतर काढा.