English

8 cm और 6 cm भुजाओं वाले एक आयत की आसन्न भुजाओं के मध्य-बिंदुओं को मिलाने से बनी आकृति है : - Mathematics (गणित)

Advertisements
Advertisements

Question

8 cm और 6 cm भुजाओं वाले एक आयत की आसन्न भुजाओं के मध्य-बिंदुओं को मिलाने से बनी आकृति है :

Options

  • 24 cm2 क्षेत्रफल का एक आयत 

  • 25 cm2 क्षेत्रफल का एक वर्ग 

  • 24 cm2 क्षेत्रफल का एक समलंब 

  • 24 cm2 क्षेत्रफल का एक समचतुर्भुज 

MCQ

Solution

24 cm2 क्षेत्रफल का एक समचतुर्भुज 

स्पष्टीकरण - 

दिया गया है - आयत जिसकी भुजाएँ 8 सेमी और 6 सेमी हैं। 

ज्ञात करना है - आयत की संलग्न भुजाओं के मध्य बिन्दुओं को मिलाने से बनी आकृति का क्षेत्रफल। 

गणना - चूँकि हम जानते हैं कि समचतुर्भुज का क्षेत्रफल = `1/2 (d_1 xx d_2)`


समचतुर्भुज EFGH के लिए, EG एक विकर्ण है जो DA के बराबर है।

FH दूसरा विकर्ण है जो AB के बराबर है।

समचतुर्भुज का क्षेत्रफल = `1/2 (d_1 xx d_2)`

समचतुर्भुज का क्षेत्रफल = `1/2 (8 xx 6)`

समचतुर्भुज का क्षेत्रफल = `1/2 (48)`

समचतुर्भुज का क्षेत्रफल = 24 cm2

shaalaa.com
एक ही आधार पर और एक ही समांतर रेखाओं के बीच आकृतियाँ
  Is there an error in this question or solution?
Chapter 9: समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल - प्रश्नावली 9.1 [Page 87]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 9 समांतर चतुर्भुजों और त्रिभुजों के क्षेत्रफल
प्रश्नावली 9.1 | Q 3. | Page 87

RELATED QUESTIONS

दी गई आकृति में, ABCD एक समांतर चतुर्भुज है, AE ⊥ DC और CF ⊥ AD है। यदि AB = 16 सेमी, AE = 8 सेमी और CF = 10 सेमी है, तो AD ज्ञात कीजिए।


D, E और F क्रमशः ΔABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। वो दिखाओ

(i) BDEF एक समांतर चतुर्भुज है।

(ii) ar (DEF) = `1/4`ar (ABC)

(iii) ar (BDEF) = `1/2`ar (ABC)


एक समलंब ABCD, जिसमें AB || DC हैं, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं | दर्शाइए कि ar(AOD) = ar(BOC) है |


ABCD एक समलंब है, जिसमें AB || DC है और AC के समांतर एक रेखा AB को X पर और BC को Y पर प्रतिच्छेद करती है | सिद्ध कीजिए कि ar (ADX) = ar (ACY) है |

[संकेत : CX को मिलाइए]


निम्नलिखित आकृतियों में से किसमें आप एक ही आधार पर और एक ही समांतर रेखाओं के बीच, बने दो बहुभुज प्राप्त करते हैं :


ABCD एक चतुर्भुज है जिसका विकर्ण AC उसे बराबर क्षेत्रफल वाले दो भागों में विभाजित करता है। तब, ABCD ______।


एक त्रिभुज और एक समांतर चतुर्भुज एक ही आधार पर और एक ही समांतर रेखाओं के बीच स्थित हैं, तो त्रिभुज के क्षेत्रफल का समांतर चतुर्भुज के क्षेत्रफल से अनुपात है


PQRS एक आयत है, जो त्रिज्या 13 cm वाले एक वृत्त के चतुर्थांश के अंतर्गत है। A भुजा PQ पर स्थित कोई बिंदु है। यदि PS = 5 cm है, तो ar (PAS) = 30 cm2 है।  


ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D भुजा BC का मध्य-बिंदु है। तब, ar (BDE) = `1/4` ar (ABC) है।


X और Y त्रिभुज LMN की भुजा LN पर स्थित दो बिंदु इस प्रकार हैं कि LX = XY = YN हैं। X से होकर जाती हुई एक रेखा LM के समांतर खींची गई जो MN को Z पर मिलती है। (देखिए आकृति)। सिद्ध कीजिए कि ar (LZY) = ar (MZYX) है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×