English

A ( 6 , 1 ) , B ( 8 , 2 ) and C ( 9 , 4 ) Are Three Vertices of a Parallelogram Abcd . If E is the Mid-point of Dc , Find the Area of δ Ade. - Mathematics

Advertisements
Advertisements

Question

\[A\left( 6, 1 \right) , B(8, 2) \text{ and }  C(9, 4)\] are three vertices of a parallelogram ABCD . If E is the mid-point  of DC , find the area of  \[∆\] ADE.

 
Answer in Brief

Solution

Three vertices are given, then D can be calulated and it comes out to be (7, 3).
Since, E is midpoint of BD.
Therefore, coordinates of E are  \[\left( \frac{15}{2}, \frac{5}{2} \right)\] .

Now, vertices of triangle ABE rae (6, 1), (8, 2) and \[\left( \frac{15}{2}, \frac{5}{2} \right)\] . 

\[\Rightarrow \text{ Area of the ∆ ABE } = \frac{1}{2}\begin{vmatrix}1 & 6 & 1 \\ 1 & 8 & 2 \\ 1 & \frac{15}{2} & \frac{5}{2}\end{vmatrix}\]

\[ = \frac{1}{2}\left[ 1\left( 20 - 15 \right) - 6\left( \frac{5}{2} - 2 \right) + 1\left( \frac{15}{2} - 8 \right) \right]\]

\[ = \frac{1}{2}\left[ 5 - \frac{6}{2} - \frac{1}{2} \right]\]

\[ = \frac{3}{4} \text{ aq . units } \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.5 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.5 | Q 34 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that the points (−2, 5), (0, 1) and (2, −3)  are collinear.


Find the coordinates of the circumcentre of the triangle whose vertices are (3, 0), (-1, -6) and (4, -1). Also, find its circumradius.


Find a point on the x-axis which is equidistant from the points (7, 6) and (−3, 4).


If the points A (a, -11), B (5, b), C (2, 15) and D (1, 1) are the vertices of a parallelogram ABCD, find the values of a and b.


Determine the ratio in which the point (-6, a) divides the join of A (-3, 1)  and B (-8, 9). Also, find the value of a.


Find the points on the y-axis which is equidistant form the points A(6,5)  and B(- 4,3) 


If the point A (4,3) and B ( x,5)  lies on a circle with the centre o (2,3) . Find the value of x.


If the point P (2,2)  is equidistant from the points A ( -2,K ) and B( -2K , -3) , find k. Also, find the length of AP.


Find the co-ordinates of the point which divides the join of A(-5, 11) and B(4,-7) in the ratio 7 : 2


In what ratio does the point P(2,5) divide the join of A (8,2) and B(-6, 9)?


Find the ratio in which the pint (-3, k) divide the join of A(-5, -4) and B(-2, 3),Also, find the value of k.


Find the ratio in which the point (-1, y) lying on the line segment joining points A(-3, 10) and (6, -8) divides it. Also, find the value of y.


If the point A(0,2) is equidistant from the points B(3,p) and C(p, 5), find p.


The abscissa of a point is positive in the


If the vertices of a triangle are (1, −3), (4, p) and (−9, 7) and its area is 15 sq. units, find the value(s) of p.     


Find the value of k, if the points A(7, −2), B (5, 1) and (3, 2k) are collinear.

 

If the mid-point of the segment joining A (xy + 1) and B (x + 1, y + 2) is C \[\left( \frac{3}{2}, \frac{5}{2} \right)\] , find xy.

 

 
 

If the area of the triangle formed by the points (x, 2x), (−2, 6)  and (3, 1) is 5 square units , then x =


 The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is


If point P is midpoint of segment joining point A(– 4, 2) and point B(6, 2), then the coordinates of P are ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×