Advertisements
Advertisements
Question
A ball is thrown up with a speed of 4.9 ms-1.
Calculate the maximum height it would gain before it begins to fall.
Solution
Initial speed of ball is = 4.9 ms-1.
Acceleration due to gravity = -9.8 ms-2.
We know v2 - u2 =2as
At highest point final velocity is zero so
0 - 4.9 X 4.9 = 2 X (-9.8) S
S = 1.125 m
APPEARS IN
RELATED QUESTIONS
State two applications of universal law of gravitation.
Can two particles be in equilibrium under the action of their mutual gravitational force? Can three particles be? Can one of the three particles be?
The weight of an object is more at the poles than at the equator. Is it beneficial to purchase goods at equator and sell them at the pole? Does it matter whether a spring balance is used or an equal-beam balance is used?
Two concentric spherical shells have masses M1, M2 and radii R1, R2 (R1 < R2). What is the force exerted by this system on a particle of mass m1 if it is placed at a distance (R1+ R2)/2 from the centre?
A tunnel is dug along a chord of the earth at a perpendicular distance R/2 from the earth's centre. The wall of the tunnel may be assumed to be frictionless. Find the force exerted by the wall on a particle of mass m when it is at a distance x from the centre of the tunnel.
Explain the following:
People often shake the branches of a tree for getting down its fruits.
The distance-time values for an object moving along straight line are given below:
Time (s) | Distance (m) |
0 | 0 |
1 | 1 |
2 | 8 |
3 | 27 |
Solve the following problem.
Calculate the acceleration due to gravity at a height of 300 km from the surface of the Earth. (M = 5.98 × 1024 kg, R = 6400 km).
The gravitational force between two bodies is directly proportional to the product of the masses of those bodies and is _______ of the distance between them.
Different points in earth are at slightly different distances from the sun and hence experience different forces due to gravitation. For a rigid body, we know that if various forces act at various points in it, the resultant motion is as if a net force acts on the c.m. (centre of mass) causing translation and a net torque at the c.m. causing rotation around an axis through the c.m. For the earth-sun system (approximating the earth as a uniform density sphere).