English
Karnataka Board PUCPUC Science Class 11

A Block of Mass 0.5 Kg Hanging from a Vertical Spring Executes Simple Harmonic Motion of Amplitude 0.1 M and Time Period 0.314 S. Find the Maximum Force Exerted by the Spring on the Block. - Physics

Advertisements
Advertisements

Question

A block of mass 0.5 kg hanging from a vertical spring executes simple harmonic motion of amplitude 0.1 m and time period 0.314 s. Find the maximum force exerted by the spring on the block.

Sum

Solution

It is given that:
Amplitude of simple harmonic motion, x = 0.1 m
Time period of simple harmonic motion, T  = 0.314 s
Mass of the block, m = 0.5 kg
Weight of the block, W = mg = 0.5 \[\times\] 10 = 5 kg         \[\left( \because g = 10 {ms}^{- 2} \right)\]

Total force exerted on the block = Weight of the block + spring force

Periodic time of spring is given by,

\[T = 2\pi\sqrt{\left( \frac{m}{k} \right)}\]

\[ \Rightarrow 0 . 314 = 2\pi\sqrt{\left( \frac{0 . 5}{k} \right)}\]

\[ \Rightarrow k = 200 N/m\]

∴ The force exerted by the spring on the block \[\left( F \right)\] is,
    F = kx = 200.0 × 0.1 = 20 N

    Maximum force = + weight of the block
                             = 20 + 5 = 25 N

shaalaa.com
Energy in Simple Harmonic Motion
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Exercise [Page 252]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Exercise | Q 11 | Page 252

RELATED QUESTIONS

A particle executes simple harmonic motion with an amplitude of 10 cm. At what distance from the mean position are the kinetic and potential energies equal?


A particle having mass 10 g oscillates according to the equation x = (2.0 cm) sin [(100 s−1)t + π/6]. Find (a) the amplitude, the time period and the spring constant. (c) the position, the velocity and the acceleration at t = 0.


The spring shown in figure is unstretched when a man starts pulling on the cord. The mass of the block is M. If the man exerts a constant force F, find (a) the amplitude and the time period of the motion of the block, (b) the energy stored in the spring when the block passes through the equilibrium position and (c) the kinetic energy of the block at this position.


Repeat the previous exercise if the angle between each pair of springs is 120° initially.


Find the elastic potential energy stored in each spring shown in figure, when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


Consider the situation shown in figure . Show that if the blocks are displaced slightly in opposite direction and released, they will execute simple harmonic motion. Calculate the time period.


Show that for a particle executing simple harmonic motion.

  1. the average value of kinetic energy is equal to the average value of potential energy.
  2. average potential energy = average kinetic energy = `1/2` (total energy)

Hint: average kinetic energy = <kinetic energy> = `1/"T" int_0^"T" ("Kinetic energy") "dt"` and

average potential energy = <potential energy> = `1/"T" int_0^"T" ("Potential energy") "dt"`


When a particle executing S.H.M oscillates with a frequency v, then the kinetic energy of the particle? 


When the displacement of a particle executing simple harmonic motion is half its amplitude, the ratio of its kinetic energy to potential energy is ______.


If a body is executing simple harmonic motion and its current displacements is `sqrt3/2` times the amplitude from its mean position, then the ratio between potential energy and kinetic energy is:


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Find the displacement of a simple harmonic oscillator at which its P.E. is half of the maximum energy of the oscillator.


A mass of 2 kg is attached to the spring of spring constant 50 Nm–1. The block is pulled to a distance of 5 cm from its equilibrium position at x = 0 on a horizontal frictionless surface from rest at t = 0. Write the expression for its displacement at anytime t.


A body of mass m is attached to one end of a massless spring which is suspended vertically from a fixed point. The mass is held in hand so that the spring is neither stretched nor compressed. Suddenly the support of the hand is removed. The lowest position attained by the mass during oscillation is 4 cm below the point, where it was held in hand.

What is the amplitude of oscillation?


An object of mass 0.5 kg is executing a simple Harmonic motion. Its amplitude is 5 cm and the time period (T) is 0.2 s. What will be the potential energy of the object at an instant t = `T/4` s starting from the mean position? Assume that the initial phase of the oscillation is zero.


A particle undergoing simple harmonic motion has time dependent displacement given by x(t) = A sin`(pit)/90`. The ratio of kinetic to the potential energy of this particle at t = 210s will be ______.


The total energy of a particle, executing simple harmonic motion is ______.

where x is the displacement from the mean position, hence total energy is independent of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×