हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Block of Mass 0.5 Kg Hanging from a Vertical Spring Executes Simple Harmonic Motion of Amplitude 0.1 M and Time Period 0.314 S. Find the Maximum Force Exerted by the Spring on the Block. - Physics

Advertisements
Advertisements

प्रश्न

A block of mass 0.5 kg hanging from a vertical spring executes simple harmonic motion of amplitude 0.1 m and time period 0.314 s. Find the maximum force exerted by the spring on the block.

योग

उत्तर

It is given that:
Amplitude of simple harmonic motion, x = 0.1 m
Time period of simple harmonic motion, T  = 0.314 s
Mass of the block, m = 0.5 kg
Weight of the block, W = mg = 0.5 \[\times\] 10 = 5 kg         \[\left( \because g = 10 {ms}^{- 2} \right)\]

Total force exerted on the block = Weight of the block + spring force

Periodic time of spring is given by,

\[T = 2\pi\sqrt{\left( \frac{m}{k} \right)}\]

\[ \Rightarrow 0 . 314 = 2\pi\sqrt{\left( \frac{0 . 5}{k} \right)}\]

\[ \Rightarrow k = 200 N/m\]

∴ The force exerted by the spring on the block \[\left( F \right)\] is,
    F = kx = 200.0 × 0.1 = 20 N

    Maximum force = + weight of the block
                             = 20 + 5 = 25 N

shaalaa.com
Energy in Simple Harmonic Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 11 | पृष्ठ २५२

संबंधित प्रश्न

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is

(a) at the end A,

(b) at the end B,

(c) at the mid-point of AB going towards A,

(d) at 2 cm away from B going towards A,

(e) at 3 cm away from A going towards B, and

(f) at 4 cm away from B going towards A.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


Consider a particle moving in simple harmonic motion according to the equation x = 2.0 cos (50 πt + tan−1 0.75) where x is in centimetre and t in second. The motion is started at t = 0. (a) When does the particle come to rest for the first time? (b) When does he acceleration have its maximum magnitude for the first time? (c) When does the particle come to rest for the second time ?


The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N/m. What mass should be attached to the spring?


A body of mass 2 kg suspended through a vertical spring executes simple harmonic motion of period 4 s. If the oscillations are stopped and the body hangs in equilibrium find the potential energy stored in the spring.


The block of mass m1 shown in figure is fastened to the spring and the block of mass m2 is placed against it. (a) Find the compression of the spring in the equilibrium position. (b) The blocks are pushed a further distance (2/k) (m1 + m2)g sin θ against the spring and released. Find the position where the two blocks separate. (c) What is the common speed of blocks at the time of separation?


The springs shown in the figure are all unstretched in the beginning when a man starts pulling the block. The man exerts a constant force F on the block. Find the amplitude and the frequency of the motion of the block.


Find the elastic potential energy stored in each spring shown in figure, when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


Consider the situation shown in figure . Show that if the blocks are displaced slightly in opposite direction and released, they will execute simple harmonic motion. Calculate the time period.


A rectangle plate of sides a and b is suspended from a ceiling by two parallel string of length L each in Figure . The separation between the string is d. The plate is displaced slightly in its plane keeping the strings tight. Show that it will execute simple harmonic motion. Find the time period.


Find the elastic potential energy stored in each spring shown in figure when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


Show that for a particle executing simple harmonic motion.

  1. the average value of kinetic energy is equal to the average value of potential energy.
  2. average potential energy = average kinetic energy = `1/2` (total energy)

Hint: average kinetic energy = <kinetic energy> = `1/"T" int_0^"T" ("Kinetic energy") "dt"` and

average potential energy = <potential energy> = `1/"T" int_0^"T" ("Potential energy") "dt"`


When a particle executing S.H.M oscillates with a frequency v, then the kinetic energy of the particle? 


When the displacement of a particle executing simple harmonic motion is half its amplitude, the ratio of its kinetic energy to potential energy is ______.


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


A mass of 2 kg is attached to the spring of spring constant 50 Nm–1. The block is pulled to a distance of 5 cm from its equilibrium position at x = 0 on a horizontal frictionless surface from rest at t = 0. Write the expression for its displacement at anytime t.


A body of mass m is attached to one end of a massless spring which is suspended vertically from a fixed point. The mass is held in hand so that the spring is neither stretched nor compressed. Suddenly the support of the hand is removed. The lowest position attained by the mass during oscillation is 4 cm below the point, where it was held in hand.

What is the amplitude of oscillation?


A particle undergoing simple harmonic motion has time dependent displacement given by x(t) = A sin`(pit)/90`. The ratio of kinetic to the potential energy of this particle at t = 210s will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×