हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider the Situation Shown in Figure . Show that If the Blocks Are Displaced Slightly in Opposite Direction and Released, They Will Execute Simple Harmonic Motion. Calculate the Time Period. - Physics

Advertisements
Advertisements

प्रश्न

Consider the situation shown in figure . Show that if the blocks are displaced slightly in opposite direction and released, they will execute simple harmonic motion. Calculate the time period.

योग

उत्तर

The centre of mass of the system should not change during simple harmonic motion.
Therefore, if the block m on the left hand side moves towards right by distance x, the block on the right hand side should also move towards left by distance x. The total compression of the spring is 2x.
If v is the velocity of the block. Then
Using energy method, we can write:

\[\frac{1}{2}k \left( 2x \right)^2  + \frac{1}{2}m v^2  + \frac{1}{2}m v^2  = C\]

⇒ mv2 + 2kx2 = C
By taking the derivative of both sides with respect to t, we get:

\[2mv\frac{dv}{dt} + 2k \times 2x\frac{dx}{dt} = 0\] 

\[\text { Putting } v = \frac{dx}{dt}; \text { and } a = \frac{dv}{dt}\text { in  above  expression,   we  get }\] 

\[  ma + 2kx = 0                                \] 

\[ \Rightarrow  - \frac{a}{x} = \frac{2k}{m} =  \omega^2 \] 

\[ \Rightarrow \omega = \sqrt{\frac{2k}{m}}\] 

\[ \Rightarrow \text { Time  period },   T = 2\pi\sqrt{\left( \frac{m}{2k} \right)}\]

shaalaa.com
Energy in Simple Harmonic Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 25 | पृष्ठ २५४

संबंधित प्रश्न

The maximum speed and acceleration of a particle executing simple harmonic motion are 10 cm/s and 50 cm/s2. Find the position(s) of the particle when the speed is 8 cm/s.


A particle having mass 10 g oscillates according to the equation x = (2.0 cm) sin [(100 s−1)t + π/6]. Find (a) the amplitude, the time period and the spring constant. (c) the position, the velocity and the acceleration at t = 0.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N/m. What mass should be attached to the spring?


A block suspended from a vertical spring is in equilibrium. Show that the extension of the spring equals the length of an equivalent simple pendulum, i.e., a pendulum having frequency same as that of the block.


A body of mass 2 kg suspended through a vertical spring executes simple harmonic motion of period 4 s. If the oscillations are stopped and the body hangs in equilibrium find the potential energy stored in the spring.


Repeat the previous exercise if the angle between each pair of springs is 120° initially.


The springs shown in the figure are all unstretched in the beginning when a man starts pulling the block. The man exerts a constant force F on the block. Find the amplitude and the frequency of the motion of the block.


Find the elastic potential energy stored in each spring shown in figure, when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


Solve the previous problem if the pulley has a moment of inertia I about its axis and the string does not slip over it.


A rectangle plate of sides a and b is suspended from a ceiling by two parallel string of length L each in Figure . The separation between the string is d. The plate is displaced slightly in its plane keeping the strings tight. Show that it will execute simple harmonic motion. Find the time period.


A 1 kg block is executing simple harmonic motion of amplitude 0.1 m on a smooth horizontal surface under the restoring force of a spring of spring constant 100 N/m. A block of mass 3 kg is gently placed on it at the instant it passes through the mean position. Assuming that the two blocks move together, find the frequency and the amplitude of the motion.


When the displacement of a particle executing simple harmonic motion is half its amplitude, the ratio of its kinetic energy to potential energy is ______.


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


Motion of an oscillating liquid column in a U-tube is ______.


Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Draw a graph to show the variation of P.E., K.E. and total energy of a simple harmonic oscillator with displacement.


Find the displacement of a simple harmonic oscillator at which its P.E. is half of the maximum energy of the oscillator.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×