हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Rectangle Plate of Sides a and B is Suspended from a Ceiling by Two Parallel String of Length L Each in Figure . the Separation Between the String is D - Physics

Advertisements
Advertisements

प्रश्न

A rectangle plate of sides a and b is suspended from a ceiling by two parallel string of length L each in Figure . The separation between the string is d. The plate is displaced slightly in its plane keeping the strings tight. Show that it will execute simple harmonic motion. Find the time period.

योग

उत्तर

Let m is the mass of rectangular plate and x is the displacement of the rectangular plate.
During the oscillation, the centre of mass does not change.
Driving force \[\left( F \right)\] is given as,
F = mgsin θ
Comparing the above equation with F = ma, we get: 
\[a   =   \frac{F}{m}   =   g\sin\theta\]

For small values of θ, sinθ can be taken as equal to θ.
Thus, the above equation reduces to:

\[a = g\theta = g\left( \frac{x}{L} \right)                                  \left[ \text { Where  g  and  L  are  constant .} \right]\]

It can be seen from the above equation that, a α x.
Hence, the motion is simple harmonic.
Time period of simple harmonic motion \[\left( T \right)\]is given by,

\[T = 2\pi\sqrt{\frac{\text { displacement }}{\text { Acceleration }}}\] 

\[     = 2\pi\sqrt{\frac{x}{gx/L}} = 2\pi\sqrt{\frac{L}{g}}\]

shaalaa.com
Energy in Simple Harmonic Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 26 | पृष्ठ २५४

संबंधित प्रश्न

The maximum speed and acceleration of a particle executing simple harmonic motion are 10 cm/s and 50 cm/s2. Find the position(s) of the particle when the speed is 8 cm/s.


A particle having mass 10 g oscillates according to the equation x = (2.0 cm) sin [(100 s−1)t + π/6]. Find (a) the amplitude, the time period and the spring constant. (c) the position, the velocity and the acceleration at t = 0.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N/m. What mass should be attached to the spring?


A block suspended from a vertical spring is in equilibrium. Show that the extension of the spring equals the length of an equivalent simple pendulum, i.e., a pendulum having frequency same as that of the block.


A body of mass 2 kg suspended through a vertical spring executes simple harmonic motion of period 4 s. If the oscillations are stopped and the body hangs in equilibrium find the potential energy stored in the spring.


The block of mass m1 shown in figure is fastened to the spring and the block of mass m2 is placed against it. (a) Find the compression of the spring in the equilibrium position. (b) The blocks are pushed a further distance (2/k) (m1 + m2)g sin θ against the spring and released. Find the position where the two blocks separate. (c) What is the common speed of blocks at the time of separation?


Solve the previous problem if the pulley has a moment of inertia I about its axis and the string does not slip over it.


Consider the situation shown in figure . Show that if the blocks are displaced slightly in opposite direction and released, they will execute simple harmonic motion. Calculate the time period.


Discuss in detail the energy in simple harmonic motion.


Show that for a particle executing simple harmonic motion.

  1. the average value of kinetic energy is equal to the average value of potential energy.
  2. average potential energy = average kinetic energy = `1/2` (total energy)

Hint: average kinetic energy = <kinetic energy> = `1/"T" int_0^"T" ("Kinetic energy") "dt"` and

average potential energy = <potential energy> = `1/"T" int_0^"T" ("Potential energy") "dt"`


When a particle executing S.H.M oscillates with a frequency v, then the kinetic energy of the particle? 


If a body is executing simple harmonic motion and its current displacements is `sqrt3/2` times the amplitude from its mean position, then the ratio between potential energy and kinetic energy is:


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Find the displacement of a simple harmonic oscillator at which its P.E. is half of the maximum energy of the oscillator.


A particle undergoing simple harmonic motion has time dependent displacement given by x(t) = A sin`(pit)/90`. The ratio of kinetic to the potential energy of this particle at t = 210s will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×