हिंदी

Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum. - Physics

Advertisements
Advertisements

प्रश्न

Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.

टिप्पणी लिखिए

उत्तर

In SHM y-t graph, zero displacement values correspond to the mean position; where the velocity of the oscillator is maximum.

Whereas the crest and troughs represent extreme positions, where displacement is maximum and velocity of the oscillator is minimum and is zero. Hence,

  1. A, C, E and G are either crests or trough having zero velocity.
  2. Speed is maximum at mean positions represented by B, D, F, and H paints.
shaalaa.com
Energy in Simple Harmonic Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Oscillations - Exercises [पृष्ठ १०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
अध्याय 14 Oscillations
Exercises | Q 14.19 | पृष्ठ १०२

संबंधित प्रश्न

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is

(a) at the end A,

(b) at the end B,

(c) at the mid-point of AB going towards A,

(d) at 2 cm away from B going towards A,

(e) at 3 cm away from A going towards B, and

(f) at 4 cm away from B going towards A.


A particle executes simple harmonic motion with an amplitude of 10 cm. At what distance from the mean position are the kinetic and potential energies equal?


The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N/m. What mass should be attached to the spring?


A block of mass 0.5 kg hanging from a vertical spring executes simple harmonic motion of amplitude 0.1 m and time period 0.314 s. Find the maximum force exerted by the spring on the block.


Repeat the previous exercise if the angle between each pair of springs is 120° initially.


A rectangle plate of sides a and b is suspended from a ceiling by two parallel string of length L each in Figure . The separation between the string is d. The plate is displaced slightly in its plane keeping the strings tight. Show that it will execute simple harmonic motion. Find the time period.


Find the elastic potential energy stored in each spring shown in figure when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


A body is performing S.H.M. Then its ______.

  1. average total energy per cycle is equal to its maximum kinetic energy.
  2. average kinetic energy per cycle is equal to half of its maximum kinetic energy.
  3. mean velocity over a complete cycle is equal to `2/π` times of its π maximum velocity. 
  4. root mean square velocity is times of its maximum velocity `1/sqrt(2)`.

A particle undergoing simple harmonic motion has time dependent displacement given by x(t) = A sin`(pit)/90`. The ratio of kinetic to the potential energy of this particle at t = 210s will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×