हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Block Suspended from a Vertical Spring is in Equilibrium. Show that the Extension of the Spring Equals the Length of an Equivalent Simple Pendulum - Physics

Advertisements
Advertisements

प्रश्न

A block suspended from a vertical spring is in equilibrium. Show that the extension of the spring equals the length of an equivalent simple pendulum, i.e., a pendulum having frequency same as that of the block.

योग

उत्तर

An equivalent simple pendulum has same time period as that of the spring mass system.
The time period of a simple pendulum is given by,

\[T_p = 2\pi\sqrt{\left( \frac{l}{g} \right)}\]

where l is the length of the pendulum, and
           g is acceleration due to gravity.

Time period of the spring is given by,

\[T_s = 2\pi\sqrt{\left( \frac{m}{k} \right)}\]

where is the mass, and 
           is the spring constant.

Let x be the extension of the spring.
For small frequency, TP ​can be taken as equal to TS.    

\[\Rightarrow \sqrt{\left( \frac{l}{g} \right)} = \sqrt{\left( \frac{m}{k} \right)}\]

\[ \Rightarrow \left( \frac{l}{g} \right) = \left( \frac{m}{k} \right)\]

\[ \Rightarrow l = \frac{mg}{k} = \frac{F}{k} = x\]

(\[\because\] restoring force = weight = mg

\[\therefore\] l = x (proved)

shaalaa.com
Energy in Simple Harmonic Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 10 | पृष्ठ २५२

संबंधित प्रश्न

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is

(a) at the end A,

(b) at the end B,

(c) at the mid-point of AB going towards A,

(d) at 2 cm away from B going towards A,

(e) at 3 cm away from A going towards B, and

(f) at 4 cm away from B going towards A.


The maximum speed and acceleration of a particle executing simple harmonic motion are 10 cm/s and 50 cm/s2. Find the position(s) of the particle when the speed is 8 cm/s.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


Consider a particle moving in simple harmonic motion according to the equation x = 2.0 cos (50 πt + tan−1 0.75) where x is in centimetre and t in second. The motion is started at t = 0. (a) When does the particle come to rest for the first time? (b) When does he acceleration have its maximum magnitude for the first time? (c) When does the particle come to rest for the second time ?


The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N/m. What mass should be attached to the spring?


A block of mass 0.5 kg hanging from a vertical spring executes simple harmonic motion of amplitude 0.1 m and time period 0.314 s. Find the maximum force exerted by the spring on the block.


The block of mass m1 shown in figure is fastened to the spring and the block of mass m2 is placed against it. (a) Find the compression of the spring in the equilibrium position. (b) The blocks are pushed a further distance (2/k) (m1 + m2)g sin θ against the spring and released. Find the position where the two blocks separate. (c) What is the common speed of blocks at the time of separation?


In following figure k = 100 N/m M = 1 kg and F = 10 N. 

  1. Find the compression of the spring in the equilibrium position. 
  2. A sharp blow by some external agent imparts a speed of 2 m/s to the block towards left. Find the sum of the potential energy of the spring and the kinetic energy of the block at this instant. 
  3. Find the time period of the resulting simple harmonic motion. 
  4. Find the amplitude. 
  5. Write the potential energy of the spring when the block is at the left extreme. 
  6. Write the potential energy of the spring when the block is at the right extreme.
    The answer of b, e and f are different. Explain why this does not violate the principle of conservation of energy.


The spring shown in figure is unstretched when a man starts pulling on the cord. The mass of the block is M. If the man exerts a constant force F, find (a) the amplitude and the time period of the motion of the block, (b) the energy stored in the spring when the block passes through the equilibrium position and (c) the kinetic energy of the block at this position.


Repeat the previous exercise if the angle between each pair of springs is 120° initially.


Solve the previous problem if the pulley has a moment of inertia I about its axis and the string does not slip over it.


A 1 kg block is executing simple harmonic motion of amplitude 0.1 m on a smooth horizontal surface under the restoring force of a spring of spring constant 100 N/m. A block of mass 3 kg is gently placed on it at the instant it passes through the mean position. Assuming that the two blocks move together, find the frequency and the amplitude of the motion.


Discuss in detail the energy in simple harmonic motion.


If a body is executing simple harmonic motion and its current displacements is `sqrt3/2` times the amplitude from its mean position, then the ratio between potential energy and kinetic energy is:


A body is performing S.H.M. Then its ______.

  1. average total energy per cycle is equal to its maximum kinetic energy.
  2. average kinetic energy per cycle is equal to half of its maximum kinetic energy.
  3. mean velocity over a complete cycle is equal to `2/π` times of its π maximum velocity. 
  4. root mean square velocity is times of its maximum velocity `1/sqrt(2)`.

Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Find the displacement of a simple harmonic oscillator at which its P.E. is half of the maximum energy of the oscillator.


A particle undergoing simple harmonic motion has time dependent displacement given by x(t) = A sin`(pit)/90`. The ratio of kinetic to the potential energy of this particle at t = 210s will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×