हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Consider a Particle Moving in Simple Harmonic Motion According to the Equation X = 2.0 Cos (50 πT + Tan−1 0.75) Where X is in Centimetre and T in Second. - Physics

Advertisements
Advertisements

प्रश्न

Consider a particle moving in simple harmonic motion according to the equation x = 2.0 cos (50 πt + tan−1 0.75) where x is in centimetre and t in second. The motion is started at t = 0. (a) When does the particle come to rest for the first time? (b) When does he acceleration have its maximum magnitude for the first time? (c) When does the particle come to rest for the second time ?

योग

उत्तर

It is given that a particle executes S.H.M.
Equation of S.H.M. of the particle:
x = 2.0 cos (50 \[\pi\] t + tan−10.75)

= 2.0 cos (50 \[\pi\]t + 0.643)

(a) Velocity of the particle is given by,

\[v = \frac{\text {dx}}{\text{dt}}\]

 v = −100 \[\pi\]sin (50 \[\pi\]t + 0.643)

As the particle comes to rest, its velocity becomes be zero.
   ⇒​ v = −100 \[\pi\]sin (50 \[\pi\]t + 0.643) = 0

⇒ sin (50\[\pi\]t + 0.643) =0 = sin\[\pi\]

When the particle initially comes to rest,
 50\[\pi\]t + 0.643 =\[\pi\]

⇒  t = 1.6 × 10−2 s

(b) Acceleration is given by,

\[a = \frac{dv}{dt}\]

\[ = - 100\pi \times 50\pi \cos \left( 50\pi t + 0 . 643 \right)\]

For maximum acceleration:
cos (50\[\pi\]t + 0.643) = −1 = cos\[\pi\](max)          (so that a is max) 
=>    t = 1.6 ×  10−2 s

(c) When the particle comes to rest for the second time, the time is given as,
 50\[\pi\]t + 0.643 = 2\[\pi\]

⇒ ​= 3.6 × 10−2 s

shaalaa.com
Energy in Simple Harmonic Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 7 | पृष्ठ २५२

संबंधित प्रश्न

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is

(a) at the end A,

(b) at the end B,

(c) at the mid-point of AB going towards A,

(d) at 2 cm away from B going towards A,

(e) at 3 cm away from A going towards B, and

(f) at 4 cm away from B going towards A.


A particle executes simple harmonic motion with an amplitude of 10 cm. At what distance from the mean position are the kinetic and potential energies equal?


A body of mass 2 kg suspended through a vertical spring executes simple harmonic motion of period 4 s. If the oscillations are stopped and the body hangs in equilibrium find the potential energy stored in the spring.


Repeat the previous exercise if the angle between each pair of springs is 120° initially.


Find the elastic potential energy stored in each spring shown in figure, when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


A 1 kg block is executing simple harmonic motion of amplitude 0.1 m on a smooth horizontal surface under the restoring force of a spring of spring constant 100 N/m. A block of mass 3 kg is gently placed on it at the instant it passes through the mean position. Assuming that the two blocks move together, find the frequency and the amplitude of the motion.


Find the elastic potential energy stored in each spring shown in figure when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


Show that for a particle executing simple harmonic motion.

  1. the average value of kinetic energy is equal to the average value of potential energy.
  2. average potential energy = average kinetic energy = `1/2` (total energy)

Hint: average kinetic energy = <kinetic energy> = `1/"T" int_0^"T" ("Kinetic energy") "dt"` and

average potential energy = <potential energy> = `1/"T" int_0^"T" ("Potential energy") "dt"`


When the displacement of a particle executing simple harmonic motion is half its amplitude, the ratio of its kinetic energy to potential energy is ______.


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Draw a graph to show the variation of P.E., K.E. and total energy of a simple harmonic oscillator with displacement.


Find the displacement of a simple harmonic oscillator at which its P.E. is half of the maximum energy of the oscillator.


A mass of 2 kg is attached to the spring of spring constant 50 Nm–1. The block is pulled to a distance of 5 cm from its equilibrium position at x = 0 on a horizontal frictionless surface from rest at t = 0. Write the expression for its displacement at anytime t.


A body of mass m is attached to one end of a massless spring which is suspended vertically from a fixed point. The mass is held in hand so that the spring is neither stretched nor compressed. Suddenly the support of the hand is removed. The lowest position attained by the mass during oscillation is 4 cm below the point, where it was held in hand.

What is the amplitude of oscillation?


An object of mass 0.5 kg is executing a simple Harmonic motion. Its amplitude is 5 cm and the time period (T) is 0.2 s. What will be the potential energy of the object at an instant t = `T/4` s starting from the mean position? Assume that the initial phase of the oscillation is zero.


A particle undergoing simple harmonic motion has time dependent displacement given by x(t) = A sin`(pit)/90`. The ratio of kinetic to the potential energy of this particle at t = 210s will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×