हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

P Consider a Simple Harmonic Motion of Time Period T. Calculate the Time Taken for the Displacement to Change Value from Half the Amplitude to the Amplitude. - Physics

Advertisements
Advertisements

प्रश्न

Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.

योग

उत्तर

As per the conditions given in the question,

\[y_1 = \frac{A}{2}; \]

\[ y_2 = A\]

    (for the given two positions)

Let y1 and y2 be the displacements at the two positions and be the amplitude.
Equation of motion for the displacement at the first position is given by,
 y1 = Asinωt1
As displacement is equal to the half of the amplitude,

\[\frac{A}{2} = A \sin \omega t_1\]

\[\Rightarrow \sin \omega t_1 = \frac{1}{2}\]

\[ \Rightarrow \frac{2\pi \times t_1}{T} = \frac{\pi}{6}\]

\[ \Rightarrow t_1 = \frac{T}{12}\]

The displacement at second position is given by,
y2 = A sin ωt2
As displacement is equal to the amplitude at this position,
⇒        A = A sin ωt2
⇒ sinωt2 = 1

\[\Rightarrow \omega t_2 = \frac{\pi}{2}\]

\[ \Rightarrow \left( \frac{2\pi}{T} \right) t_2 = \frac{\pi}{2} \left( \because \sin \frac{\pi}{2} = 1 \right)\]

\[ \Rightarrow t_2 = \frac{T}{4}\]

\[ \therefore t_2 - t_1 = \frac{T}{4} - \frac{T}{12} = \frac{T}{6}\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - Exercise [पृष्ठ २५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
Exercise | Q 8 | पृष्ठ २५२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The periodic time of a linear harmonic oscillator is 2π second, with maximum displacement of 1 cm. If the particle starts from extreme position, find the displacement of the particle after π/3  seconds.


Figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?


The length of the second’s pendulum in a clock is increased to 4 times its initial length. Calculate the number of oscillations completed by the new pendulum in one minute.


A person goes to bed at sharp 10.00 pm every day. Is it an example of periodic motion? If yes, what is the time period? If no, why?


The total mechanical energy of a spring-mass system in simple harmonic motion is \[E = \frac{1}{2}m \omega^2 A^2 .\] Suppose the oscillating particle is replaced by another particle of double the mass while the amplitude A remains the same. The new mechanical energy will


A particle is fastened at the end of a string and is whirled in a vertical circle with the other end of the string being fixed. The motion of the particle is


The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s−1 and 10 m s−2 at a certain instant. Find the amplitude and the time period of the motion.


A small block of mass m is kept on a bigger block of mass M which is attached to a vertical spring of spring constant k as shown in the figure. The system oscillates vertically. (a) Find the resultant force on the smaller block when it is displaced through a distance x above its equilibrium position. (b) Find the normal force on the smaller block at this position. When is this force smallest in magnitude? (c) What can be the maximum amplitude with which the two blocks may oscillate together?


A particle of mass m is attatched to three springs A, B and C of equal force constants kas shown in figure . If the particle is pushed slightly against the spring C and released, find the time period of oscillation.


The left block in figure moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.


A uniform plate of mass M stays horizontally and symmetrically on two wheels rotating in opposite direction in Figure . The separation between the wheels is L. The friction coefficient between each wheel and the plate is μ. Find the time period of oscillation of the plate if it is slightly displaced along its length and released.


A body of mass 1 kg is mafe to oscillate on a spring of force constant 16 N/m. Calculate (a) Angular frequency, (b) Frequency of vibrations.


When two displacements represented by y1 = a sin(ωt) and y2 = b cos(ωt) are superimposed the motion is ______. 


A simple pendulum of frequency n falls freely under gravity from a certain height from the ground level. Its frequency of oscillation.


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


The displacement time graph of a particle executing S.H.M. is shown in figure. Which of the following statement is/are true?

  1. The force is zero at `t = (T)/4`.
  2. The acceleration is maximum at `t = (4T)/4`.
  3. The velocity is maximum at `t = T/4`.
  4. The P.E. is equal to K.E. of oscillation at `t = T/2`.

What are the two basic characteristics of a simple harmonic motion?


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

A particle performs simple harmonic motion with a period of 2 seconds. The time taken by the particle to cover a displacement equal to half of its amplitude from the mean position is `1/a` s. The value of 'a' to the nearest integer is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×