मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

P Consider a Simple Harmonic Motion of Time Period T. Calculate the Time Taken for the Displacement to Change Value from Half the Amplitude to the Amplitude. - Physics

Advertisements
Advertisements

प्रश्न

Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.

बेरीज

उत्तर

As per the conditions given in the question,

\[y_1 = \frac{A}{2}; \]

\[ y_2 = A\]

    (for the given two positions)

Let y1 and y2 be the displacements at the two positions and be the amplitude.
Equation of motion for the displacement at the first position is given by,
 y1 = Asinωt1
As displacement is equal to the half of the amplitude,

\[\frac{A}{2} = A \sin \omega t_1\]

\[\Rightarrow \sin \omega t_1 = \frac{1}{2}\]

\[ \Rightarrow \frac{2\pi \times t_1}{T} = \frac{\pi}{6}\]

\[ \Rightarrow t_1 = \frac{T}{12}\]

The displacement at second position is given by,
y2 = A sin ωt2
As displacement is equal to the amplitude at this position,
⇒        A = A sin ωt2
⇒ sinωt2 = 1

\[\Rightarrow \omega t_2 = \frac{\pi}{2}\]

\[ \Rightarrow \left( \frac{2\pi}{T} \right) t_2 = \frac{\pi}{2} \left( \because \sin \frac{\pi}{2} = 1 \right)\]

\[ \Rightarrow t_2 = \frac{T}{4}\]

\[ \therefore t_2 - t_1 = \frac{T}{4} - \frac{T}{12} = \frac{T}{6}\]

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Simple Harmonics Motion - Exercise [पृष्ठ २५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 12 Simple Harmonics Motion
Exercise | Q 8 | पृष्ठ २५२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

A copper metal cube has each side of length 1 m. The bottom edge of the cube is fixed and tangential force 4.2x108 N is applied to a top surface. Calculate the lateral displacement of the top surface if modulus of rigidity of copper is 14x1010 N/m2.


Which of the following example represent periodic motion?

An arrow released from a bow.


Answer in brief:

Derive an expression for the period of motion of a simple pendulum. On which factors does it depend?


A person goes to bed at sharp 10.00 pm every day. Is it an example of periodic motion? If yes, what is the time period? If no, why?


A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates is


The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s−1 and 10 m s−2 at a certain instant. Find the amplitude and the time period of the motion.


A spring stores 5 J of energy when stretched by 25 cm. It is kept vertical with the lower end fixed. A block fastened to its other end is made to undergo small oscillations. If the block makes 5 oscillations each second what is the mass of the block?


A small block of mass m is kept on a bigger block of mass M which is attached to a vertical spring of spring constant k as shown in the figure. The system oscillates vertically. (a) Find the resultant force on the smaller block when it is displaced through a distance x above its equilibrium position. (b) Find the normal force on the smaller block at this position. When is this force smallest in magnitude? (c) What can be the maximum amplitude with which the two blocks may oscillate together?


A particle of mass m is attatched to three springs A, B and C of equal force constants kas shown in figure . If the particle is pushed slightly against the spring C and released, find the time period of oscillation.


The left block in figure moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.


A uniform plate of mass M stays horizontally and symmetrically on two wheels rotating in opposite direction in Figure . The separation between the wheels is L. The friction coefficient between each wheel and the plate is μ. Find the time period of oscillation of the plate if it is slightly displaced along its length and released.


The ear-ring of a lady shown in figure has a 3 cm long light suspension wire. (a) Find the time period of small oscillations if the lady is standing on the ground. (b) The lady now sits in a merry-go-round moving at 4 m/s1 in a circle of radius 2 m. Find the time period of small oscillations of the ear-ring.


A uniform disc of radius r is to be suspended through a small hole made in the disc. Find the minimum possible time period of the disc for small oscillations. What should be the distance of the hole from the centre for it to have minimum time period?


A simple pendulum is inside a spacecraft. What will be its periodic time? 


Which of the following example represent periodic motion?

A hydrogen molecule rotating about its center of mass.


A simple pendulum of frequency n falls freely under gravity from a certain height from the ground level. Its frequency of oscillation.


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


What are the two basic characteristics of a simple harmonic motion?


The time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration `g/2`, the time period of the pendulum will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×