मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Uniform Disc of Radius R is to Be Suspended Through a Small Hole Made in the Disc. Find the Minimum Possible Time Period of the Disc for Small Oscillations. - Physics

Advertisements
Advertisements

प्रश्न

A uniform disc of radius r is to be suspended through a small hole made in the disc. Find the minimum possible time period of the disc for small oscillations. What should be the distance of the hole from the centre for it to have minimum time period?

बेरीज

उत्तर

Let m be the mass of the disc and r be its radius.

Consider a point at a distance x from the centre of gravity.
Thus, l = x

Moment of intertia \[\left( I \right)\] about the point x will be,
I = IC.G +mx2

\[= \frac{m r^2}{2} + m x^2 \] 

\[ = m\left( \frac{r^2}{2} + x^2 \right)\] 

Time period(T) is given as,

\[T = 2\pi\sqrt{\frac{I}{mgl}}\] 

\[\text { On  substituting  the  respective  values  in  the  above  equation,   we  get: }\] 

\[T = 2\pi\sqrt{\frac{m\left( \frac{r^2}{2} + x^2 \right)}{mgx}}        (l   =   x)\] 

\[     = 2\pi\sqrt{\frac{m\left( r^2 + 2 x^2 \right)}{2mgx}}\] 

\[     = 2\pi\sqrt{\frac{r {}^2 + 2 x^2}{2gx}}                              \ldots(1)    \] 

To determine the minimum value of T,

\[T = 2\pi\sqrt{\frac{I}{mgl}}\] 

\[\text { On  substituting  the  respective  values  in  the  above  equation,   we  get: }\] 

\[T = 2\pi\sqrt{\frac{m\left( \frac{r^2}{2} + x^2 \right)}{mgx}}        (l   =   x)\] 

\[     = 2\pi\sqrt{\frac{m\left( r^2 + 2 x^2 \right)}{2mgx}}\] 

\[     = 2\pi\sqrt{\frac{r {}^2 + 2 x^2}{2gx}}                              \ldots(1)    \] 

To determine the minimum value of T,

\[\frac{d^2 T}{d x^2} = 0\]

\[\text { Now }, \] 

\[\frac{d^2 T}{d x^2} = \frac{d}{dx}\left( \frac{4 \pi^2 r^2}{2gx} + \frac{4 \pi^2 2 x^2}{2gx} \right)\] 

\[ \Rightarrow \frac{2 \pi^2 r^2}{g}\left( - \frac{1}{x^2} \right) + \frac{4 \pi^2}{g} = 0\] 

\[ \Rightarrow  - \frac{\pi^2 r^2}{g x^2} + \frac{2 \pi^2}{g} = 0\] 

\[ \Rightarrow \frac{\pi^2 r^2}{g x^2} = \frac{2 \pi^2}{g}\] 

\[ \Rightarrow 2 x^2  =  r^2 \] 

\[ \Rightarrow x = \frac{r}{\sqrt{2}}\]

Substituting this value of in equation (1), we get:

\[T = 2\pi\sqrt{\frac{r^2 + 2\left( \frac{r^2}{2} \right)}{2gx}}\] 

\[     = 2\pi\sqrt{\frac{2 r^2}{2gx}} = 2\pi\sqrt{\frac{r^2}{g\frac{r}{\sqrt{2}}}}      \] 

\[   = 2\pi\sqrt{\frac{\sqrt{2} r^2}{gr}} =  = 2\pi\sqrt{\frac{\sqrt{2}r}{g}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Simple Harmonics Motion - Exercise [पृष्ठ २५५]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 12 Simple Harmonics Motion
Exercise | Q 50 | पृष्ठ २५५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The periodic time of a linear harmonic oscillator is 2π second, with maximum displacement of 1 cm. If the particle starts from extreme position, find the displacement of the particle after π/3  seconds.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

General vibrations of a polyatomic molecule about its equilibrium position.


The length of the second’s pendulum in a clock is increased to 4 times its initial length. Calculate the number of oscillations completed by the new pendulum in one minute.


A person goes to bed at sharp 10.00 pm every day. Is it an example of periodic motion? If yes, what is the time period? If no, why?


A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates is


A particle executes simple harmonic motion under the restoring force provided by a spring. The time period is T. If the spring is divided in two equal parts and one part is used to continue the simple harmonic motion, the time period will


Two bodies A and B of equal mass are suspended from two separate massless springs of spring constant k1 and k2 respectively. If the bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of A to that of B is


A particle moves in a circular path with a uniform speed. Its motion is


A particle is fastened at the end of a string and is whirled in a vertical circle with the other end of the string being fixed. The motion of the particle is


The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s−1 and 10 m s−2 at a certain instant. Find the amplitude and the time period of the motion.


Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.


The string the spring and the pulley shown in figure are light. Find the time period of the mass m.


Find the number of oscillations performed per minute by a magnet is vibrating in the plane of a uniform field of 1.6 × 10-5 Wb/m2. The magnet has a moment of inertia 3 × 10-6 kg/m2 and magnetic moment 3 A m2.


Which of the following example represent periodic motion?

A hydrogen molecule rotating about its center of mass.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.


What are the two basic characteristics of a simple harmonic motion?


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

The time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration `g/2`, the time period of the pendulum will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×