मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

A copper metal cube has each side of length 1 m. The bottom edge of the cube is fixed and tangential force 4.2x10^8 N is applied to a top surface. - Physics

Advertisements
Advertisements

प्रश्न

A copper metal cube has each side of length 1 m. The bottom edge of the cube is fixed and tangential force 4.2x108 N is applied to a top surface. Calculate the lateral displacement of the top surface if modulus of rigidity of copper is 14x1010 N/m2.

उत्तर

 

Given 

η=14x1010 N/m

F=4.2x108 N

A=1x1=1m2

`eta=(Fh)/(Ax)`

`x=(Fh)/(Aeta)`

`=(4.2xx10^8xx1m)/(1xx14xx10^10)`

`=(4.2xx10^8)/(14xx10^10)`

=0.3x10-2m=3mm

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which of the following example represent periodic motion?

An arrow released from a bow.


Figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?


Answer in brief:

Derive an expression for the period of motion of a simple pendulum. On which factors does it depend?


The length of the second’s pendulum in a clock is increased to 4 times its initial length. Calculate the number of oscillations completed by the new pendulum in one minute.


A person goes to bed at sharp 10.00 pm every day. Is it an example of periodic motion? If yes, what is the time period? If no, why?


The total mechanical energy of a spring-mass system in simple harmonic motion is \[E = \frac{1}{2}m \omega^2 A^2 .\] Suppose the oscillating particle is replaced by another particle of double the mass while the amplitude A remains the same. The new mechanical energy will


A particle executes simple harmonic motion under the restoring force provided by a spring. The time period is T. If the spring is divided in two equal parts and one part is used to continue the simple harmonic motion, the time period will


Two bodies A and B of equal mass are suspended from two separate massless springs of spring constant k1 and k2 respectively. If the bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of A to that of B is


A particle moves in a circular path with a uniform speed. Its motion is


Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.


A spring stores 5 J of energy when stretched by 25 cm. It is kept vertical with the lower end fixed. A block fastened to its other end is made to undergo small oscillations. If the block makes 5 oscillations each second what is the mass of the block?


A particle of mass m is attatched to three springs A, B and C of equal force constants kas shown in figure . If the particle is pushed slightly against the spring C and released, find the time period of oscillation.


The string the spring and the pulley shown in figure are light. Find the time period of the mass m.


The left block in figure moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.


Find the time period of the motion of the particle shown in figure . Neglect the small effect of the bend near the bottom.


A uniform plate of mass M stays horizontally and symmetrically on two wheels rotating in opposite direction in Figure . The separation between the wheels is L. The friction coefficient between each wheel and the plate is μ. Find the time period of oscillation of the plate if it is slightly displaced along its length and released.


The ear-ring of a lady shown in figure has a 3 cm long light suspension wire. (a) Find the time period of small oscillations if the lady is standing on the ground. (b) The lady now sits in a merry-go-round moving at 4 m/s1 in a circle of radius 2 m. Find the time period of small oscillations of the ear-ring.


Find the time period of small oscillations of the following systems. (a) A metre stick suspended through the 20 cm mark. (b) A ring of mass m and radius r suspended through a point on its periphery. (c) A uniform square plate of edge a suspended through a corner. (d) A uniform disc of mass m and radius r suspended through a point r/2 away from the centre.


A uniform disc of radius r is to be suspended through a small hole made in the disc. Find the minimum possible time period of the disc for small oscillations. What should be the distance of the hole from the centre for it to have minimum time period?


A body of mass 1 kg is mafe to oscillate on a spring of force constant 16 N/m. Calculate (a) Angular frequency, (b) Frequency of vibrations.


The period of oscillation of a body of mass m1 suspended from a light spring is T. When a body of mass m2 is tied to the first body and the system is made to oscillate, the period is 2T. Compare the masses m1 and m2


The maximum speed of a particle executing S.H.M. is 10 m/s and maximum acceleration is 31.4 m/s2. Its periodic time is ______ 


A simple pendulum is inside a spacecraft. What will be its periodic time? 


Which of the following example represent periodic motion?

A hydrogen molecule rotating about its center of mass.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The rotation of the earth about its axis.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

A motion of an oscillating mercury column in a U-tube.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.


When two displacements represented by y1 = a sin(ωt) and y2 = b cos(ωt) are superimposed the motion is ______. 


A simple pendulum of frequency n falls freely under gravity from a certain height from the ground level. Its frequency of oscillation.


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


What are the two basic characteristics of a simple harmonic motion?


Show that the motion of a particle represented by y = sin ωt – cos ωt is simple harmonic with a period of 2π/ω.


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

The time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration `g/2`, the time period of the pendulum will be ______.


When a particle executes Simple Harmonic Motion, the nature of the graph of velocity as a function of displacement will be ______.


A particle performs simple harmonic motion with a period of 2 seconds. The time taken by the particle to cover a displacement equal to half of its amplitude from the mean position is `1/a` s. The value of 'a' to the nearest integer is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×