English

A copper metal cube has each side of length 1 m. The bottom edge of the cube is fixed and tangential force 4.2x10^8 N is applied to a top surface. - Physics

Advertisements
Advertisements

Question

A copper metal cube has each side of length 1 m. The bottom edge of the cube is fixed and tangential force 4.2x108 N is applied to a top surface. Calculate the lateral displacement of the top surface if modulus of rigidity of copper is 14x1010 N/m2.

Solution

 

Given 

η=14x1010 N/m

F=4.2x108 N

A=1x1=1m2

`eta=(Fh)/(Ax)`

`x=(Fh)/(Aeta)`

`=(4.2xx10^8xx1m)/(1xx14xx10^10)`

`=(4.2xx10^8)/(14xx10^10)`

=0.3x10-2m=3mm

 
shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A seconds pendulum is suspended in an elevator moving with constant speed in downward direction. The periodic time (T) of that pendulum is _______.


The periodic time of a linear harmonic oscillator is 2π second, with maximum displacement of 1 cm. If the particle starts from extreme position, find the displacement of the particle after π/3  seconds.


Which of the following example represent periodic motion?

An arrow released from a bow.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

General vibrations of a polyatomic molecule about its equilibrium position.


The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rad/min, what is its maximum speed?


A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates is


Two bodies A and B of equal mass are suspended from two separate massless springs of spring constant k1 and k2 respectively. If the bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of A to that of B is


A particle is fastened at the end of a string and is whirled in a vertical circle with the other end of the string being fixed. The motion of the particle is


The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s−1 and 10 m s−2 at a certain instant. Find the amplitude and the time period of the motion.


Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.


A spring stores 5 J of energy when stretched by 25 cm. It is kept vertical with the lower end fixed. A block fastened to its other end is made to undergo small oscillations. If the block makes 5 oscillations each second what is the mass of the block?


A small block of mass m is kept on a bigger block of mass M which is attached to a vertical spring of spring constant k as shown in the figure. The system oscillates vertically. (a) Find the resultant force on the smaller block when it is displaced through a distance x above its equilibrium position. (b) Find the normal force on the smaller block at this position. When is this force smallest in magnitude? (c) What can be the maximum amplitude with which the two blocks may oscillate together?


A particle of mass m is attatched to three springs A, B and C of equal force constants kas shown in figure . If the particle is pushed slightly against the spring C and released, find the time period of oscillation.


The string the spring and the pulley shown in figure are light. Find the time period of the mass m.


The left block in figure moves at a speed v towards the right block placed in equilibrium. All collisions to take place are elastic and the surfaces are frictionless. Show that the motions of the two blocks are periodic. Find the time period of these periodic motions. Neglect the widths of the blocks.


Find the time period of the motion of the particle shown in figure . Neglect the small effect of the bend near the bottom.


The ear-ring of a lady shown in figure has a 3 cm long light suspension wire. (a) Find the time period of small oscillations if the lady is standing on the ground. (b) The lady now sits in a merry-go-round moving at 4 m/s1 in a circle of radius 2 m. Find the time period of small oscillations of the ear-ring.


Find the time period of small oscillations of the following systems. (a) A metre stick suspended through the 20 cm mark. (b) A ring of mass m and radius r suspended through a point on its periphery. (c) A uniform square plate of edge a suspended through a corner. (d) A uniform disc of mass m and radius r suspended through a point r/2 away from the centre.


A uniform disc of radius r is to be suspended through a small hole made in the disc. Find the minimum possible time period of the disc for small oscillations. What should be the distance of the hole from the centre for it to have minimum time period?


A body of mass 1 kg is mafe to oscillate on a spring of force constant 16 N/m. Calculate (a) Angular frequency, (b) Frequency of vibrations.


The period of oscillation of a body of mass m1 suspended from a light spring is T. When a body of mass m2 is tied to the first body and the system is made to oscillate, the period is 2T. Compare the masses m1 and m2


A 20 cm wide thin circular disc of mass 200 g is suspended to rigid support from a thin metallic string. By holding the rim of the disc, the string is twisted through 60° and released. It now performs angular oscillations of period 1 second. Calculate the maximum restoring torque generated in the string under undamped conditions. (π3 ≈ 31)


The maximum speed of a particle executing S.H.M. is 10 m/s and maximum acceleration is 31.4 m/s2. Its periodic time is ______ 


Which of the following example represent periodic motion?

A freely suspended bar magnet displaced from its N-S direction and released.


Which of the following example represent periodic motion?

A hydrogen molecule rotating about its center of mass.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The rotation of the earth about its axis.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

A motion of an oscillating mercury column in a U-tube.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


What are the two basic characteristics of a simple harmonic motion?


Show that the motion of a particle represented by y = sin ωt – cos ωt is simple harmonic with a period of 2π/ω.


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

When a particle executes Simple Harmonic Motion, the nature of the graph of velocity as a function of displacement will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×