English
Karnataka Board PUCPUC Science Class 11

A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates - Physics

Advertisements
Advertisements

Question

A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates is

Options

  • v/2

  • v

  • (c) 2 v

  • zero

MCQ

Solution

2v

Because in one complete oscillation, the kinetic energy changes its value from zero to maximum, twice.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - MCQ [Page 251]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
MCQ | Q 13 | Page 251

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rad/min, what is its maximum speed?


The total mechanical energy of a spring-mass system in simple harmonic motion is \[E = \frac{1}{2}m \omega^2 A^2 .\] Suppose the oscillating particle is replaced by another particle of double the mass while the amplitude A remains the same. The new mechanical energy will


Two bodies A and B of equal mass are suspended from two separate massless springs of spring constant k1 and k2 respectively. If the bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of A to that of B is


Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.


A particle of mass m is attatched to three springs A, B and C of equal force constants kas shown in figure . If the particle is pushed slightly against the spring C and released, find the time period of oscillation.


Find the time period of the motion of the particle shown in figure . Neglect the small effect of the bend near the bottom.


A uniform plate of mass M stays horizontally and symmetrically on two wheels rotating in opposite direction in Figure . The separation between the wheels is L. The friction coefficient between each wheel and the plate is μ. Find the time period of oscillation of the plate if it is slightly displaced along its length and released.


Find the time period of small oscillations of the following systems. (a) A metre stick suspended through the 20 cm mark. (b) A ring of mass m and radius r suspended through a point on its periphery. (c) A uniform square plate of edge a suspended through a corner. (d) A uniform disc of mass m and radius r suspended through a point r/2 away from the centre.


Which of the following example represent periodic motion?

A swimmer completing one (return) trip from one bank of a river to the other and back.


Which of the following example represent periodic motion?

A freely suspended bar magnet displaced from its N-S direction and released.


When two displacements represented by y1 = a sin(ωt) and y2 = b cos(ωt) are superimposed the motion is ______. 


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


The displacement time graph of a particle executing S.H.M. is shown in figure. Which of the following statement is/are true?

  1. The force is zero at `t = (T)/4`.
  2. The acceleration is maximum at `t = (4T)/4`.
  3. The velocity is maximum at `t = T/4`.
  4. The P.E. is equal to K.E. of oscillation at `t = T/2`.

The time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration `g/2`, the time period of the pendulum will be ______.


When a particle executes Simple Harmonic Motion, the nature of the graph of velocity as a function of displacement will be ______.


A particle performs simple harmonic motion with a period of 2 seconds. The time taken by the particle to cover a displacement equal to half of its amplitude from the mean position is `1/a` s. The value of 'a' to the nearest integer is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×