हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates - Physics

Advertisements
Advertisements

प्रश्न

A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates is

विकल्प

  • v/2

  • v

  • (c) 2 v

  • zero

MCQ

उत्तर

2v

Because in one complete oscillation, the kinetic energy changes its value from zero to maximum, twice.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Simple Harmonics Motion - MCQ [पृष्ठ २५१]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 12 Simple Harmonics Motion
MCQ | Q 13 | पृष्ठ २५१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The periodic time of a linear harmonic oscillator is 2π second, with maximum displacement of 1 cm. If the particle starts from extreme position, find the displacement of the particle after π/3  seconds.


Figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?


The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rad/min, what is its maximum speed?


The total mechanical energy of a spring-mass system in simple harmonic motion is \[E = \frac{1}{2}m \omega^2 A^2 .\] Suppose the oscillating particle is replaced by another particle of double the mass while the amplitude A remains the same. The new mechanical energy will


A particle executes simple harmonic motion under the restoring force provided by a spring. The time period is T. If the spring is divided in two equal parts and one part is used to continue the simple harmonic motion, the time period will


A spring stores 5 J of energy when stretched by 25 cm. It is kept vertical with the lower end fixed. A block fastened to its other end is made to undergo small oscillations. If the block makes 5 oscillations each second what is the mass of the block?


The string the spring and the pulley shown in figure are light. Find the time period of the mass m.


Find the time period of small oscillations of the following systems. (a) A metre stick suspended through the 20 cm mark. (b) A ring of mass m and radius r suspended through a point on its periphery. (c) A uniform square plate of edge a suspended through a corner. (d) A uniform disc of mass m and radius r suspended through a point r/2 away from the centre.


A 20 cm wide thin circular disc of mass 200 g is suspended to rigid support from a thin metallic string. By holding the rim of the disc, the string is twisted through 60° and released. It now performs angular oscillations of period 1 second. Calculate the maximum restoring torque generated in the string under undamped conditions. (π3 ≈ 31)


The maximum speed of a particle executing S.H.M. is 10 m/s and maximum acceleration is 31.4 m/s2. Its periodic time is ______ 


Which of the following example represent periodic motion?

A swimmer completing one (return) trip from one bank of a river to the other and back.


Which of the following example represent periodic motion?

A freely suspended bar magnet displaced from its N-S direction and released.


Which of the following example represent periodic motion?

A hydrogen molecule rotating about its center of mass.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The rotation of the earth about its axis.


When two displacements represented by y1 = a sin(ωt) and y2 = b cos(ωt) are superimposed the motion is ______. 


Show that the motion of a particle represented by y = sin ωt – cos ωt is simple harmonic with a period of 2π/ω.


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×