हिंदी

The Periodic Time of a Linear Harmonic Oscillator is 2π Second, with Maximum Displacement of 1 Cm. - Physics

Advertisements
Advertisements

प्रश्न

The periodic time of a linear harmonic oscillator is 2π second, with maximum displacement of 1 cm. If the particle starts from extreme position, find the displacement of the particle after π/3  seconds.

उत्तर

Given:-

`a=1cm,t=pi/3s,omega=(2pi)/T=(2pi)/(2pi)=1`

To find: Displacement (x)

Formula: x = A cos ωt

Calculation: From formula,

`"x"=1cos(1xxpi/3)=cos(pi/3)`

`therefore"x"=0.5cm`

The displacement of the particle after π/3 seconds is 0.5 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (October)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which of the following example represent periodic motion?

An arrow released from a bow.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

General vibrations of a polyatomic molecule about its equilibrium position.


Figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?


The length of the second’s pendulum in a clock is increased to 4 times its initial length. Calculate the number of oscillations completed by the new pendulum in one minute.


A person goes to bed at sharp 10.00 pm every day. Is it an example of periodic motion? If yes, what is the time period? If no, why?


Two bodies A and B of equal mass are suspended from two separate massless springs of spring constant k1 and k2 respectively. If the bodies oscillate vertically such that their maximum velocities are equal, the ratio of the amplitude of A to that of B is


A particle is fastened at the end of a string and is whirled in a vertical circle with the other end of the string being fixed. The motion of the particle is


The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s−1 and 10 m s−2 at a certain instant. Find the amplitude and the time period of the motion.


Consider a simple harmonic motion of time period T. Calculate the time taken for the displacement to change value from half the amplitude to the amplitude.


A small block of mass m is kept on a bigger block of mass M which is attached to a vertical spring of spring constant k as shown in the figure. The system oscillates vertically. (a) Find the resultant force on the smaller block when it is displaced through a distance x above its equilibrium position. (b) Find the normal force on the smaller block at this position. When is this force smallest in magnitude? (c) What can be the maximum amplitude with which the two blocks may oscillate together?


The string the spring and the pulley shown in figure are light. Find the time period of the mass m.


Find the time period of the motion of the particle shown in figure . Neglect the small effect of the bend near the bottom.


The ear-ring of a lady shown in figure has a 3 cm long light suspension wire. (a) Find the time period of small oscillations if the lady is standing on the ground. (b) The lady now sits in a merry-go-round moving at 4 m/s1 in a circle of radius 2 m. Find the time period of small oscillations of the ear-ring.


The period of oscillation of a body of mass m1 suspended from a light spring is T. When a body of mass m2 is tied to the first body and the system is made to oscillate, the period is 2T. Compare the masses m1 and m2


A 20 cm wide thin circular disc of mass 200 g is suspended to rigid support from a thin metallic string. By holding the rim of the disc, the string is twisted through 60° and released. It now performs angular oscillations of period 1 second. Calculate the maximum restoring torque generated in the string under undamped conditions. (π3 ≈ 31)


The maximum speed of a particle executing S.H.M. is 10 m/s and maximum acceleration is 31.4 m/s2. Its periodic time is ______ 


A simple pendulum is inside a spacecraft. What will be its periodic time? 


Which of the following example represent periodic motion?

A swimmer completing one (return) trip from one bank of a river to the other and back.


Which of the following example represent periodic motion?

A freely suspended bar magnet displaced from its N-S direction and released.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The rotation of the earth about its axis.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

A motion of an oscillating mercury column in a U-tube.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

The motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.


When two displacements represented by y1 = a sin(ωt) and y2 = b cos(ωt) are superimposed the motion is ______. 


A simple pendulum of frequency n falls freely under gravity from a certain height from the ground level. Its frequency of oscillation.


The equation of motion of a particle is x = a cos (αt)2. The motion is ______.


The displacement time graph of a particle executing S.H.M. is shown in figure. Which of the following statement is/are true?

  1. The force is zero at `t = (T)/4`.
  2. The acceleration is maximum at `t = (4T)/4`.
  3. The velocity is maximum at `t = T/4`.
  4. The P.E. is equal to K.E. of oscillation at `t = T/2`.

What are the two basic characteristics of a simple harmonic motion?


Show that the motion of a particle represented by y = sin ωt – cos ωt is simple harmonic with a period of 2π/ω.


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

The time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration `g/2`, the time period of the pendulum will be ______.


When a particle executes Simple Harmonic Motion, the nature of the graph of velocity as a function of displacement will be ______.


A particle performs simple harmonic motion with a period of 2 seconds. The time taken by the particle to cover a displacement equal to half of its amplitude from the mean position is `1/a` s. The value of 'a' to the nearest integer is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×