English
Karnataka Board PUCPUC Science Class 11

The Position, Velocity and Acceleration of a Particle Executing Simple Harmonic Motion Are Found to Have Magnitude 2 Cm, 1 M S−1 and 10 M S−2 at a Certain Instant. Find the Amplitude - Physics

Advertisements
Advertisements

Question

The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitude 2 cm, 1 m s−1 and 10 m s−2 at a certain instant. Find the amplitude and the time period of the motion.

Sum

Solution

It is given that:
Position of the particle, x = 2 cm = 0.02 m
Velocity of the particle, v = 1 ms−1.
Acceleration of the particle, a = 10 ms−2.
Let

\[\omega\] be the angular frequency of the particle.
The acceleration of the particle is given by,
 a = ω2x

\[\Rightarrow \omega = \sqrt{\frac{a}{x}} = \sqrt{\frac{10}{0 . 02}}\]

\[ = \sqrt{500} = 10\sqrt{5} Hz\]

\[\text { Time period of the motion is given as, } \]

\[ T = \frac{2\pi}{\omega} = \frac{2\pi}{10\sqrt{5}}\]

\[ = \frac{2 \times 3 . 14}{10 \times 2 . 236}\]

\[ = 0 . 28 s\]

Now, the amplitude A is calculated as,

\[v = \omega\sqrt{A^2 - x^2}\]

\[ \Rightarrow v^2 = \omega^2 \left( A^2 - x^2 \right)\]

\[ 1 = 500\left( A^2 - 0 . 0004 \right)\]

\[ \Rightarrow A = 0 . 0489 = 0 . 049 m\]

\[ \Rightarrow A = 4 . 9 \text { cm }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Exercise [Page 252]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Exercise | Q 2 | Page 252

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A seconds pendulum is suspended in an elevator moving with constant speed in downward direction. The periodic time (T) of that pendulum is _______.


The periodic time of a linear harmonic oscillator is 2π second, with maximum displacement of 1 cm. If the particle starts from extreme position, find the displacement of the particle after π/3  seconds.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

General vibrations of a polyatomic molecule about its equilibrium position.


Figure depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion? What is the period of motion (in case of periodic motion)?


The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rad/min, what is its maximum speed?


Answer in brief:

Derive an expression for the period of motion of a simple pendulum. On which factors does it depend?


The length of the second’s pendulum in a clock is increased to 4 times its initial length. Calculate the number of oscillations completed by the new pendulum in one minute.


The total mechanical energy of a spring-mass system in simple harmonic motion is \[E = \frac{1}{2}m \omega^2 A^2 .\] Suppose the oscillating particle is replaced by another particle of double the mass while the amplitude A remains the same. The new mechanical energy will


A particle executes simple harmonic motion with a frequency v. The frequency with which the kinetic energy oscillates is


A particle executes simple harmonic motion under the restoring force provided by a spring. The time period is T. If the spring is divided in two equal parts and one part is used to continue the simple harmonic motion, the time period will


Find the time period of small oscillations of the following systems. (a) A metre stick suspended through the 20 cm mark. (b) A ring of mass m and radius r suspended through a point on its periphery. (c) A uniform square plate of edge a suspended through a corner. (d) A uniform disc of mass m and radius r suspended through a point r/2 away from the centre.


A body of mass 1 kg is mafe to oscillate on a spring of force constant 16 N/m. Calculate (a) Angular frequency, (b) Frequency of vibrations.


Find the number of oscillations performed per minute by a magnet is vibrating in the plane of a uniform field of 1.6 × 10-5 Wb/m2. The magnet has a moment of inertia 3 × 10-6 kg/m2 and magnetic moment 3 A m2.


The maximum speed of a particle executing S.H.M. is 10 m/s and maximum acceleration is 31.4 m/s2. Its periodic time is ______ 


Which of the following example represent periodic motion?

A freely suspended bar magnet displaced from its N-S direction and released.


Which of the following example represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion?

A motion of an oscillating mercury column in a U-tube.


A person normally weighing 50 kg stands on a massless platform which oscillates up and down harmonically at a frequency of 2.0 s–1 and an amplitude 5.0 cm. A weighing machine on the platform gives the persons weight against time.

  1. Will there be any change in weight of the body, during the oscillation?
  2. If answer to part (a) is yes, what will be the maximum and minimum reading in the machine and at which position?

The time period of a simple pendulum is T inside a lift when the lift is stationary. If the lift moves upwards with an acceleration `g/2`, the time period of the pendulum will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×