हिंदी

A mass of 2 kg is attached to the spring of spring constant 50 Nm–1. - Physics

Advertisements
Advertisements

प्रश्न

A mass of 2 kg is attached to the spring of spring constant 50 Nm–1. The block is pulled to a distance of 5 cm from its equilibrium position at x = 0 on a horizontal frictionless surface from rest at t = 0. Write the expression for its displacement at anytime t.

टिप्पणी लिखिए

उत्तर

Consider the diagram of the spring block system. It is an S.H.M. with an amplitude of 5 cm about the mean position shown.


Given, the spring constant k = 50 N/m

m = mass attached = 2 kg

∴ Angular frequency `ω = sqrt(k/m)`

= `sqrt(50/2)`

= `sqrt(25)`

= 5 rad/s

Assuming the displacement function

`y(t) = Asin(ωt + phi)`

Where `phi` = initial phase

But given at t = 0, y(t) = + A

y(0) = + A = Asin(ω × 0 + `phi`)

or `sin phi` = 1 ⇒ `phi = pi/2`

∴  The desired equation is `y(t) = Asin(ωt + pi/2) = Acos ωt`

Putting A = 5 cm, ω = 5 rad/s

We get, y(t) = 5sin5t

Where t is in second and y is in centimetre.

shaalaa.com
Energy in Simple Harmonic Motion
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Oscillations - Exercises [पृष्ठ १०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
अध्याय 14 Oscillations
Exercises | Q 14.33 | पृष्ठ १०३

संबंधित प्रश्न

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is

(a) at the end A,

(b) at the end B,

(c) at the mid-point of AB going towards A,

(d) at 2 cm away from B going towards A,

(e) at 3 cm away from A going towards B, and

(f) at 4 cm away from B going towards A.


A particle having mass 10 g oscillates according to the equation x = (2.0 cm) sin [(100 s−1)t + π/6]. Find (a) the amplitude, the time period and the spring constant. (c) the position, the velocity and the acceleration at t = 0.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


A block of mass 0.5 kg hanging from a vertical spring executes simple harmonic motion of amplitude 0.1 m and time period 0.314 s. Find the maximum force exerted by the spring on the block.


The spring shown in figure is unstretched when a man starts pulling on the cord. The mass of the block is M. If the man exerts a constant force F, find (a) the amplitude and the time period of the motion of the block, (b) the energy stored in the spring when the block passes through the equilibrium position and (c) the kinetic energy of the block at this position.


The springs shown in the figure are all unstretched in the beginning when a man starts pulling the block. The man exerts a constant force F on the block. Find the amplitude and the frequency of the motion of the block.


Show that for a particle executing simple harmonic motion.

  1. the average value of kinetic energy is equal to the average value of potential energy.
  2. average potential energy = average kinetic energy = `1/2` (total energy)

Hint: average kinetic energy = <kinetic energy> = `1/"T" int_0^"T" ("Kinetic energy") "dt"` and

average potential energy = <potential energy> = `1/"T" int_0^"T" ("Potential energy") "dt"`


If a body is executing simple harmonic motion and its current displacements is `sqrt3/2` times the amplitude from its mean position, then the ratio between potential energy and kinetic energy is:


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


A body is performing S.H.M. Then its ______.

  1. average total energy per cycle is equal to its maximum kinetic energy.
  2. average kinetic energy per cycle is equal to half of its maximum kinetic energy.
  3. mean velocity over a complete cycle is equal to `2/π` times of its π maximum velocity. 
  4. root mean square velocity is times of its maximum velocity `1/sqrt(2)`.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×