English
Karnataka Board PUCPUC Science Class 11

A Rectangle Plate of Sides a and B is Suspended from a Ceiling by Two Parallel String of Length L Each in Figure . the Separation Between the String is D - Physics

Advertisements
Advertisements

Question

A rectangle plate of sides a and b is suspended from a ceiling by two parallel string of length L each in Figure . The separation between the string is d. The plate is displaced slightly in its plane keeping the strings tight. Show that it will execute simple harmonic motion. Find the time period.

Sum

Solution

Let m is the mass of rectangular plate and x is the displacement of the rectangular plate.
During the oscillation, the centre of mass does not change.
Driving force \[\left( F \right)\] is given as,
F = mgsin θ
Comparing the above equation with F = ma, we get: 
\[a   =   \frac{F}{m}   =   g\sin\theta\]

For small values of θ, sinθ can be taken as equal to θ.
Thus, the above equation reduces to:

\[a = g\theta = g\left( \frac{x}{L} \right)                                  \left[ \text { Where  g  and  L  are  constant .} \right]\]

It can be seen from the above equation that, a α x.
Hence, the motion is simple harmonic.
Time period of simple harmonic motion \[\left( T \right)\]is given by,

\[T = 2\pi\sqrt{\frac{\text { displacement }}{\text { Acceleration }}}\] 

\[     = 2\pi\sqrt{\frac{x}{gx/L}} = 2\pi\sqrt{\frac{L}{g}}\]

shaalaa.com
Energy in Simple Harmonic Motion
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Exercise [Page 254]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Exercise | Q 26 | Page 254

RELATED QUESTIONS

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is

(a) at the end A,

(b) at the end B,

(c) at the mid-point of AB going towards A,

(d) at 2 cm away from B going towards A,

(e) at 3 cm away from A going towards B, and

(f) at 4 cm away from B going towards A.


A particle executes simple harmonic motion with an amplitude of 10 cm. At what distance from the mean position are the kinetic and potential energies equal?


The maximum speed and acceleration of a particle executing simple harmonic motion are 10 cm/s and 50 cm/s2. Find the position(s) of the particle when the speed is 8 cm/s.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


Consider a particle moving in simple harmonic motion according to the equation x = 2.0 cos (50 πt + tan−1 0.75) where x is in centimetre and t in second. The motion is started at t = 0. (a) When does the particle come to rest for the first time? (b) When does he acceleration have its maximum magnitude for the first time? (c) When does the particle come to rest for the second time ?


The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N/m. What mass should be attached to the spring?


A body of mass 2 kg suspended through a vertical spring executes simple harmonic motion of period 4 s. If the oscillations are stopped and the body hangs in equilibrium find the potential energy stored in the spring.


In following figure k = 100 N/m M = 1 kg and F = 10 N. 

  1. Find the compression of the spring in the equilibrium position. 
  2. A sharp blow by some external agent imparts a speed of 2 m/s to the block towards left. Find the sum of the potential energy of the spring and the kinetic energy of the block at this instant. 
  3. Find the time period of the resulting simple harmonic motion. 
  4. Find the amplitude. 
  5. Write the potential energy of the spring when the block is at the left extreme. 
  6. Write the potential energy of the spring when the block is at the right extreme.
    The answer of b, e and f are different. Explain why this does not violate the principle of conservation of energy.


The spring shown in figure is unstretched when a man starts pulling on the cord. The mass of the block is M. If the man exerts a constant force F, find (a) the amplitude and the time period of the motion of the block, (b) the energy stored in the spring when the block passes through the equilibrium position and (c) the kinetic energy of the block at this position.


Find the elastic potential energy stored in each spring shown in figure, when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


Consider the situation shown in figure . Show that if the blocks are displaced slightly in opposite direction and released, they will execute simple harmonic motion. Calculate the time period.


Discuss in detail the energy in simple harmonic motion.


When the displacement of a particle executing simple harmonic motion is half its amplitude, the ratio of its kinetic energy to potential energy is ______.


Motion of an oscillating liquid column in a U-tube is ______.


Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Draw a graph to show the variation of P.E., K.E. and total energy of a simple harmonic oscillator with displacement.


A body of mass m is attached to one end of a massless spring which is suspended vertically from a fixed point. The mass is held in hand so that the spring is neither stretched nor compressed. Suddenly the support of the hand is removed. The lowest position attained by the mass during oscillation is 4 cm below the point, where it was held in hand.

What is the amplitude of oscillation?


An object of mass 0.5 kg is executing a simple Harmonic motion. Its amplitude is 5 cm and the time period (T) is 0.2 s. What will be the potential energy of the object at an instant t = `T/4` s starting from the mean position? Assume that the initial phase of the oscillation is zero.


The total energy of a particle, executing simple harmonic motion is ______.

where x is the displacement from the mean position, hence total energy is independent of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×