English
Karnataka Board PUCPUC Science Class 11

The Pendulum of a Clock is Replaced by a Spring-mass System with the Spring Having Spring Constant 0.1 N M−1. What Mass Should Be Attached to the Spring? - Physics

Advertisements
Advertisements

Question

The pendulum of a clock is replaced by a spring-mass system with the spring having spring constant 0.1 N/m. What mass should be attached to the spring?

Sum

Solution

Given:
Spring constant, =0.1 N/m
Time period of the pendulum of clock, T = 2 s

Mass attached to the string, m, is to be found.

The relation between time period and spring constant is given as,

\[T = 2\pi \sqrt{\left( \frac{m}{k} \right)}\]
On substituting the respective values, we get:
 

\[2 = 2\pi\sqrt{\frac{m}{k}}\]

\[ \Rightarrow \pi^2 \left( \frac{m}{0 . 1} \right) = 1\]

\[ \therefore m = \frac{0 . 1}{\pi^2} = \frac{0 . 1}{10}\]

\[ = 0 . 01 kg \approx 10 g\]

shaalaa.com
Energy in Simple Harmonic Motion
  Is there an error in this question or solution?
Chapter 12: Simple Harmonics Motion - Exercise [Page 252]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 12 Simple Harmonics Motion
Exercise | Q 9 | Page 252

RELATED QUESTIONS

A particle having mass 10 g oscillates according to the equation x = (2.0 cm) sin [(100 s−1)t + π/6]. Find (a) the amplitude, the time period and the spring constant. (c) the position, the velocity and the acceleration at t = 0.


The equation of motion of a particle started at t = 0 is given by x = 5 sin (20t + π/3), where x is in centimetre and in second. When does the particle
(a) first come to rest
(b) first have zero acceleration
(c) first have maximum speed?


Consider a particle moving in simple harmonic motion according to the equation x = 2.0 cos (50 πt + tan−1 0.75) where x is in centimetre and t in second. The motion is started at t = 0. (a) When does the particle come to rest for the first time? (b) When does he acceleration have its maximum magnitude for the first time? (c) When does the particle come to rest for the second time ?


A block suspended from a vertical spring is in equilibrium. Show that the extension of the spring equals the length of an equivalent simple pendulum, i.e., a pendulum having frequency same as that of the block.


A block of mass 0.5 kg hanging from a vertical spring executes simple harmonic motion of amplitude 0.1 m and time period 0.314 s. Find the maximum force exerted by the spring on the block.


In following figure k = 100 N/m M = 1 kg and F = 10 N. 

  1. Find the compression of the spring in the equilibrium position. 
  2. A sharp blow by some external agent imparts a speed of 2 m/s to the block towards left. Find the sum of the potential energy of the spring and the kinetic energy of the block at this instant. 
  3. Find the time period of the resulting simple harmonic motion. 
  4. Find the amplitude. 
  5. Write the potential energy of the spring when the block is at the left extreme. 
  6. Write the potential energy of the spring when the block is at the right extreme.
    The answer of b, e and f are different. Explain why this does not violate the principle of conservation of energy.


Consider the situation shown in figure . Show that if the blocks are displaced slightly in opposite direction and released, they will execute simple harmonic motion. Calculate the time period.


A 1 kg block is executing simple harmonic motion of amplitude 0.1 m on a smooth horizontal surface under the restoring force of a spring of spring constant 100 N/m. A block of mass 3 kg is gently placed on it at the instant it passes through the mean position. Assuming that the two blocks move together, find the frequency and the amplitude of the motion.


Find the elastic potential energy stored in each spring shown in figure when the block is in equilibrium. Also find the time period of vertical oscillation of the block.


Discuss in detail the energy in simple harmonic motion.


Show that for a particle executing simple harmonic motion.

  1. the average value of kinetic energy is equal to the average value of potential energy.
  2. average potential energy = average kinetic energy = `1/2` (total energy)

Hint: average kinetic energy = <kinetic energy> = `1/"T" int_0^"T" ("Kinetic energy") "dt"` and

average potential energy = <potential energy> = `1/"T" int_0^"T" ("Potential energy") "dt"`


A body is executing simple harmonic motion with frequency ‘n’, the frequency of its potential energy is ______.


A body is performing S.H.M. Then its ______.

  1. average total energy per cycle is equal to its maximum kinetic energy.
  2. average kinetic energy per cycle is equal to half of its maximum kinetic energy.
  3. mean velocity over a complete cycle is equal to `2/π` times of its π maximum velocity. 
  4. root mean square velocity is times of its maximum velocity `1/sqrt(2)`.

Displacement versus time curve for a particle executing S.H.M. is shown in figure. Identify the points marked at which (i) velocity of the oscillator is zero, (ii) speed of the oscillator is maximum.


Draw a graph to show the variation of P.E., K.E. and total energy of a simple harmonic oscillator with displacement.


Find the displacement of a simple harmonic oscillator at which its P.E. is half of the maximum energy of the oscillator.


A mass of 2 kg is attached to the spring of spring constant 50 Nm–1. The block is pulled to a distance of 5 cm from its equilibrium position at x = 0 on a horizontal frictionless surface from rest at t = 0. Write the expression for its displacement at anytime t.


An object of mass 0.5 kg is executing a simple Harmonic motion. Its amplitude is 5 cm and the time period (T) is 0.2 s. What will be the potential energy of the object at an instant t = `T/4` s starting from the mean position? Assume that the initial phase of the oscillation is zero.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×