English
Karnataka Board PUCPUC Science Class 11

A Capillary Tube of Radius 0.50 Mm is Dipped Vertically in a Pot of Water. Find the Difference Between the Pressure of the Water in the Tube 5.0 Cm Below the Surface and the Atmospheric Pressure. - Physics

Advertisements
Advertisements

Question

A capillary tube of radius 0.50 mm is dipped vertically in a pot of water. Find the difference between the pressure of the water in the tube 5.0 cm below the surface and the atmospheric pressure. Surface tension of water = 0.075 N m−1.

Short Note

Solution

Given:
Radius of capillary tube r = 0.5 mm = 5 × 10−4 m
Depth (where pressure is to be found) h = 5.0 cm = 5 × 10−2 m
Surface tension of water T = 0.075 N/m
Excess pressure at 5 cm before the surface:
P = ρhg = 1000 × (5 × 10−2) × 9.8 = 490 N/m2
Excess pressure at the surface is given by:

\[P_0 = \frac{2T}{r} = \frac{2 \times \left( 0 . 75 \right)}{\left( 5 \times {10}^{- 4} \right)}\]

\[ = 300 \text{ N/ m}^2\]

Difference in pressure: P0 − P

\[= 490 - 300 = 190 \text{ N/ m}^2\] 

Hence, the required difference in pressure is 190 N/m2

 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Some Mechanical Properties of Matter - Exercise [Page 301]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 14 Some Mechanical Properties of Matter
Exercise | Q 22 | Page 301

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Explain why The angle of contact of mercury with glass is obtuse, while that of water with glass is acute


Explain why Water on a clean glass surface tends to spread out while mercury on the same surface tends to form drops. (Put differently, water wets glass while mercury does not.)


What is the excess pressure inside a bubble of soap solution of radius 5.00 mm, given that the surface tension of soap solution at the temperature (20 °C) is 2.50 × 10–2 N m–1? If an air bubble of the same dimension were formed at depth of 40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble? (1 atmospheric pressure is 1.01 × 105 Pa).


State any two characteristics of the angle of contact


The contact angle between a solid and a liquid is a property of

(a) the material of the solid
(b) the material of the liquid
(c) the shape of the solid
(d) the mass of the solid


A liquid is contained in a vertical tube of semicircular cross section. The contact angle is zero. The force of surface tension on the curved part and on the flat part are in ratio


When a capillary tube is dipped into a liquid, the liquid neither rises nor falls in the capillary.
(a) The surface tension of the liquid must be zero.
(b) The contact angle must be 90°.
(c) The surface tension may be zero.
(d) The contact angle may be 90°.


A wire forming a loop is dipped into soap solution and taken out so that a film of soap solution is formed. A loop of 6.28 cm long thread is gently put on the film and the film is pricked with a needle inside the loop. The thread loop takes the shape of a circle. Find the tension the the thread. Surface tension of soap solution = 0.030 N m−1.


A cube of ice floats partly in water and partly in K.oil (in the following figure). Find the ratio of the volume of ice immersed in water to that in K.oil. Specific gravity of K.oil is 0.8 and that of ice is 0.9. 


Water level is maintained in a cylindrical vessel up to a fixed height H. The vessel is kept on a horizontal plane. At what height above the bottom should a hole be made in the vessel so that the water stream coming out of the hole strikes the horizontal plane at the greatest distance from the vessel.


Define surface tension 


Explain the phenomena of surface tension on the basis of molecular theory.


Mention the S.I unit and dimension of surface tension.


Water rises in a capillary tube of radius r upto a height h. The mass of water in a capillary is m. The mass of water that will rise in a capillary of radius `"r"/4` will be ______.


Under isothermal conditions, two soap bubbles of radii 'r1' and 'r2' coalesce to form a big drop. The radius of the big drop is ______.


The sufrace tension and vapour pressure of water at 20°C is 7.28 × 10–2 Nm–1 and 2.33 × 103 Pa, respectively. What is the radius of the smallest spherical water droplet which can form without evaporating at 20°C?


A hot air balloon is a sphere of radius 8 m. The air inside is at a temperature of 60°C. How large a mass can the balloon lift when the outside temperature is 20°C? (Assume air is an ideal gas, R = 8.314 J mole–1K–1, 1 atm. = 1.013 × 105 Pa; the membrane tension is 5 Nm–1.)


Eight droplets of water each of radius 0.2 mm coalesce into a single drop. Find the decrease in the surface area.


Work done to blow a bubble of volume V is W. The work done in blowing a bubble of volume 2V will be ______.


The surface tension of boiling water is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×