English

A Diet of Two Foods F1 And F2 Contains Nutrients Thiamine, Phosphorous and Iron. the Amount of Each Nutrient in Each of the Food (In Milligrams per 25 Gms) is Given in the Following Table: - Mathematics

Advertisements
Advertisements

Question

A diet of two foods F1 and F2 contains nutrients thiamine, phosphorous and iron. The amount of each nutrient in each of the food (in milligrams per 25 gms) is given in the following table:


Nutrients
Food
 
F1 F2
Thiamine 0.25 0.10

 
Phosphorous 0.75 1.50
Iron 1.60 0.80

The minimum requirement of the nutrients in the diet are 1.00 mg of thiamine, 7.50 mg of phosphorous and 10.00 mg of iron. The cost of F1 is 20 paise per 25 gms while the cost of F2 is 15 paise per 25 gms. Find the minimum cost of diet.

Sum

Solution

Let 25x grams of food F1 and 25y grams of food F2 be used to fulfil the minimum requirement of thiamine, phosphorus and iron.
As, we are given
 


Nutrients
Food
 
F1 F2
Thiamine 0.25 0.10
Phosphorous 0.75 1.50
Iron 1.60 0.80


And the minimum requirement of the nutrients in the diet are 1.00 mg of thiamine, 7.50 mg of phosphorous and 10.00 mg of iron.\[\text{ Therefore, } \]
\[0 . 25x + 0 . 10y \geq 1\]
\[0 . 75x + 1 . 50y \geq 7 . 5\]
\[1 . 6x + 0 . 8y \geq 10\]
\[\text{ Since, the quantity cannot be negative } \]
\[ \    ∴   x, y  \geq 0\]

The cost of F1 is 20 paise per 25 gms while the cost of F2 is 15 paise per 25 gms.Therefore, the cost of 25x grams of food F1 and 25y grams of food F2 is
Rs (0.20x + 0.15y).
Hence,
Minimize Z = \[0 . 20x + 0 . 15y\]
subject to

\[0 . 25x + 0 . 10y \geq 1\]
\[0 . 75x + 1 . 50y \geq 7 . 5\]
\[1 . 6x + 0 . 8y \geq 10\]
\[ x, y \geq 0\]

First, we will convert the given inequations into equations, we obtain the following equations:
0.25x + 0.10y = 1, 0.75x + 1.50y = 7.51.6x + 0.8y = 10, x = 0 and y = 0.
The line 0.25x + 0.10y = 1 meets the coordinate axis at

A(4,0) and B(0, 10). Join these points to obtain the line 0.25x + 0.10y = 1.
Clearly, (0, 0) does not satisfies the inequation 0.25x + 0.10y ≥ 1. So, the region in xy-plane that does not contains the origin represents the solution set of the given equation.

The line 0.75x + 1.50y = 7.5. meets the coordinate axis at C(10, 0) and D(0, 5). Join these points to obtain the line 0.75x + 1.50y = 7.5.
Clearly, (0, 0) does not satisfies the inequation 0.75x + 1.50y ≥ 0.75. So, the region in xy-plane that does not contains the origin represents the solution set of the given equation.

The line 1.6x + 0.8y = 10 meets the coordinate axis at

\[E\left( \frac{25}{4}, 0 \right)\] and \[F\left( 0, \frac{25}{2} \right)\] Join these points to obtain the line 1.6x + 0.8y = 10.
Clearly, (0, 0) does not satisfies the inequation 1.6x + 0.8y ≥ 10. So, the region in xy-plane that does not contains the origin represents the solution set of the given equation.

Region represented by x ≥ 0 and y ≥ 0:
Since, every point in the first quadrant satisfies these inequations. So, the first quadrant is the region represented by the inequations.
These lines are drawn using a suitable scale.

The corner points of the feasible region are F(0, 12.5), G(5, 2.5), C(10, 0)
 
The value of the objective function at these points are given by the following table

Points Value of Z
F 0.20(0)+0.15(12.5) = 1.875
G 0.20(5)+0.15(2.5) = 1.375
C 0.20(10) + 0.15(0) = 200


Thus, the minimum cost is at G which is Rs 1.375

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Linear programming - Exercise 30.3 [Page 38]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 30 Linear programming
Exercise 30.3 | Q 1 | Page 38

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Minimize `z=4x+5y ` subject to `2x+y>=7, 2x+3y<=15, x<=3,x>=0, y>=0` solve using graphical method.


Minimize : Z = 6x + 4y

Subject to the conditions:

3x + 2y ≥ 12,

x + y ≥ 5,

0 ≤ x ≤ 4,

0 ≤ y ≤ 4


Find graphically, the maximum value of z = 2x + 5y, subject to constraints given below :

2x + 4y  83

x + y  6

x + y  4

x  0, y 0


Maximise Z = x + 2y subject to the constraints

`x + 2y >= 100`

`2x - y <= 0`

`2x + y <= 200`

Solve the above LPP graphically


Solve the following L.P.P. graphically Maximise Z = 4x + y 

Subject to following constraints  x + y ≤ 50

3x + y ≤ 90,

x ≥ 10

x, y ≥ 0


Maximize Z = 4x + 3y
subject to

\[3x + 4y \leq 24\]
\[8x + 6y \leq 48\]
\[ x \leq 5\]
\[ y \leq 6\]
\[ x, y \geq 0\]


Maximize Z = 3x + 3y, if possible,
Subject to the constraints

\[x - y \leq 1\]
\[x + y \geq 3\]
\[ x, y \geq 0\]


Solved the following linear programming problem graphically:
Maximize Z = 60x + 15y
Subject to constraints

\[x + y \leq 50\]
\[3x + y \leq 90\]
\[ x, y \geq 0\]


Find graphically, the maximum value of Z = 2x + 5y, subject to constraints given below:

2x + 4y ≤ 8
3x + y ≤ 6
x + y ≤ 4 
x ≥ 0, ≥ 0   


A diet for a sick person must contain at least 4000 units of vitamins, 50 units of minerals and 1400 of calories. Two foods A and B, are available at a cost of Rs 4 and Rs 3 per unit respectively. If one unit of A contains 200 units of vitamin, 1 unit of mineral and 40 calories and one unit of food B contains 100 units of vitamin, 2 units of minerals and 40 calories, find what combination of foods should be used to have the least cost?


A diet is to contain at least 80 units of vitamin A and 100 units of minerals. Two foods F1and F2 are available. Food F1 costs Rs 4 per unit and F2 costs Rs 6 per unit one unit of food F1 contains 3 units of vitamin A and 4 units of minerals. One unit of food F2contains 6 units of vitamin A and 3 units of minerals. Formulate this as a linear programming problem and find graphically the minimum cost for diet that consists of mixture of these foods and also meets the mineral nutritional requirements


Kellogg is a new cereal formed of a mixture of bran and rice that contains at least 88 grams of protein and at least 36 milligrams of iron. Knowing that bran contains 80 grams of protein and 40 milligrams of iron per kilogram, and that rice contains 100 grams of protein and 30 milligrams of iron per kilogram, find the minimum cost of producing this new cereal if bran costs Rs 5 per kg and rice costs Rs 4 per kg


One kind of cake requires 300 gm of flour and 15 gm of fat, another kind of cake requires 150 gm of flour and 30 gm of fat. Find the maximum number of cakes which can be made from 7.5 kg of flour and 600 gm of fat, assuming that there is no shortage of the other ingradients used in making the cake. Make it as an LPP and solve it graphically.


One kind of cake requires 200 g of flour and 25 g of fat, and another kind of cake requires 100 g of flour and 50 g of fat. Find the maximum number of cakes which can be made from 5 kg of flour and 1 kg of fat assuming that there is no storage of the other ingredients used in making the cakes.


A manufacturer makes two types A and B of tea-cups. Three machines are needed for the manufacture and the time in minutes required for each cup on the machines is given below:

  Machines
I II III
A
B
12
6
18
0
6
9

Each machine is available for a maximum of 6 hours per day. If the profit on each cup A is 75 paise and that on each cup B is 50 paise, show that 15 tea-cups of type A and 30 of type B should be manufactured in a day to get the maximum profit.


A firm manufacturing two types of electric items, A and B, can make a profit of Rs 20 per unit of A and Rs 30 per unit of B. Each unit of A requires 3 motors and 4 transformers and each unit of B requires 2 motors and 4 transformers. The total supply of these per month is restricted to 210 motors and 300 transformers. Type B is an export model requiring a voltage stabilizer which has a supply restricted to 65 units per month. Formulate the linear programing problem for maximum profit and solve it graphically.


A publisher sells a hard cover edition of a text book for Rs 72.00 and paperback edition of the same ext for Rs 40.00. Costs to the publisher are Rs 56.00 and Rs 28.00 per book respectively in addition to weekly costs of Rs 9600.00. Both types require 5 minutes of printing time, although hardcover requires 10 minutes binding time and the paperback requires only 2 minutes. Both the printing and binding operations have 4,800 minutes available each week. How many of each type of book should be produced in order to maximize profit?


A box manufacturer makes large and small boxes from a large piece of cardboard. The large boxes require 4 sq. metre per box while the small boxes require 3 sq. metre per box. The manufacturer is required to make at least three large boxes and at least twice as many small boxes as large boxes. If 60 sq. metre of cardboard is in stock, and if the profits on the large and small boxes are Rs 3 and Rs 2 per box, how many of each should be made in order to maximize the total profit?


There are two factories located one at place P and the other at place Q. From these locations, a certain commodity is to be delivered to each of the three depots situated at A, B and C. The weekly requirements of the depots are respectively 5, 5 and 4 units of the commodity while the production capacity of the factories at P and Q are respectively 8 and 6 units. The cost of transportation per unit is given below:
 

From \ To Cost (in ₹)
  A B C
P 160 100 150
Q 100 120 100


How many units should be transported from each factory to each depot in order that the transportation cost is minimum. What will be the minimum transportation cost?


A manufacturer produces two products and B. Both the products are processed on two different machines. The available capacity of first machine is 12 hours and that of second machine is 9 hours per day. Each unit of product A requires 3 hours on both machines and each unit of product B requires 2 hours on first machine and 1 hour on second machine. Each unit of product A is sold at ₹7 profit and that of at a profit of ₹4. Find the production level per day for maximum profit graphically.


A small firm manufactures necklaces and bracelets. The total number of necklaces and bracelets that it can handle per day is at most 24. It takes one hour to make a bracelet and half an hour to make a necklace. The maximum number of hours available per day is 16. If the profit on a necklace is Rs 100 and that on a bracelet is Rs 300. Formulate on L.P.P. for finding how many of each should be produced daily to maximize the profit?
It is being given that at least one of each must be produced.


 Maximize: z = 3x + 5y  Subject to

x +4y ≤ 24                3x + y  ≤ 21 

x + y ≤ 9                     x ≥ 0 , y ≥0


The graph of the inequality 3X − 4Y ≤ 12, X ≤ 1, X ≥ 0, Y ≥ 0 lies in fully in


Find the graphical solution for the system of linear inequation 2x + y ≤ 2, x − y ≤ 1


Draw the graph of inequalities x ≤ 6, y −2 ≤ 0, x ≥ 0, y ≥ 0 and indicate the feasible region


For L.P.P. maximize z = 4x1 + 2x2 subject to 3x1 + 2x2 ≥ 9, x1 - x2 ≤ 3, x1 ≥ 0, x2 ≥ 0 has ______.


The feasible region of an LPP is shown in the figure. If z = 3x + 9y, then the minimum value of z occurs at ______.


The maximum of z = 5x + 2y, subject to the constraints x + y ≤ 7, x + 2y ≤ 10, x, y ≥ 0 is ______.


Of all the points of the feasible region for maximum or minimum of objective function the points.


In linear programming feasible region (or solution region) for the problem is ____________.


A feasible solution to a linear programming problem


A manufacturer wishes to produce two commodities A and B. The number of units of material, labour and equipment needed to produce one unit of each commodity is shown in the table given below. Also shown is the available number of units of each item, material, labour, and equipment.

Items Commodity A Commodity B Available no. of Units
Material 1 2 8
Labour 3 2 12
Equipment 1 1 10

Find the maximum profit if each unit of commodity A earns a profit of ₹ 2 and each unit of B earns a profit of ₹ 3.


Which of the statements describe the solution set for `-2(x + 8) = - 2x + 20`?


The solution set of the inequality 3x + 5y < 4 is ______.


Minimize z = x + 2y,

Subject to x + 2y ≥ 50, 2x – y ≤ 0, 2x + y ≤ 100, x ≥ 0, y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×