English

A series LCR circuit with L = 0.12 H, C = 480 nF, R = 23 Ω is connected to a 230 V variable frequency supply. (a) What is the source frequency for which current amplitude is maximum. - Physics

Advertisements
Advertisements

Question

A series LCR circuit with L = 0.12 H, C = 480 nF, R = 23 Ω is connected to a 230 V variable frequency supply.

(a) What is the source frequency for which current amplitude is maximum. Obtain this maximum value.

(b) What is the source frequency for which average power absorbed by the circuit is maximum. Obtain the value of this maximum power.

(c) For which frequencies of the source is the power transferred to the circuit half the power at resonant frequency? What is the current amplitude at these frequencies?

(d) What is the Q-factor of the given circuit?

Numerical

Solution

Inductance, L = 0.12 H

Capacitance, C = 480 nF = 480 × 10−9 F

Resistance, R = 23 Ω

Supply voltage, V = 230 V

Peak voltage is given as:

V0 = `sqrt2 xx 230` = 325.22 V

(a) Current flowing in the circuit is given by the relation, 

I0 = `"V"_0/(sqrt("R"^2 + (ω"L" - 1/(ω"C"))^2`

Where,

I0 = maximum at resonance

At resonance, we have

`ω_"R""L" - 1/(ω_"R""C")` = 0

Where,

ω= Resonance angular frequency

∴ ω= `1/sqrt("LC")`

= `1/sqrt(0.12 xx 480 xx 10^-9)`

= 4166.67 rad/s

∴ Resonant frequency, vR = `ω_"R"/(2π) = 4166.67/(2 xx 3.14)` = 663.48 Hz

And, maximum current `("I"_0)_"Max" = "V"_0/"R" = 325.22/23` = 14.14 A

(b) Maximum average power absorbed by the circuit is given as:

`("P"_"av")_"Max" = 1/2 ("I"_0)_"Max"^2 "R"`

= `1/2 xx (14.14)^2 xx 23`

= 2299.3 W

Hence, resonant frequency (vR) is 663.48 Hz.

(c) The power transferred to the circuit is half the power at resonant frequency.

Frequencies at which power transferred is half, = ωR ± Δω

= `2π ("v"_"R" ± Δ"v")`

Where,

Δω = `"R"/(2"L")`

= `23/(2 xx 0.12)`

= 95.83 rad/s

Hence, change in frequency, Δv = `1/(2π)Δω = 95.83/(2π)` = 15.26 Hz

∴ vR + Δv = 663.48 + 15.26 = 678.74 Hz

And, vR − Δv = 663.48 − 15.26 = 648.22 Hz

Hence, at 648.22 Hz and 678.74 Hz frequencies, the power transferred is half.

At these frequencies, current amplitude can be given as:

I' = `1/sqrt2 xx ("I"_0)_"Max"`

= `14.14/sqrt2`

= 10 A

(d) Q-factor of the given circuit can be obtained using the relation, Q = `(ω_"R""L")/"R"`

= `(4166.67 xx 0.12)/23`

= 21.74

Hence, the Q-factor of the given circuit is 21.74.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Alternating Current - Exercise [Page 268]

APPEARS IN

NCERT Physics [English] Class 12
Chapter 7 Alternating Current
Exercise | Q 7.20 | Page 268

RELATED QUESTIONS

In a series LCR circuit connected to an a.c. source of voltage v = vmsinωt, use phasor diagram to derive an expression for the current in the circuit. Hence, obtain the expression for the power dissipated in the circuit. Show that power dissipated at resonance is maximum


Find the value of t/τ for which the current in an LR circuit builds up to (a) 90%, (b) 99% and (c) 99.9% of the steady-state value.


A coil of resistance 40 Ω is connected across a 4.0 V battery. 0.10 s after the battery is connected, the current in the coil is 63 mA. Find the inductance of the coil.


In a series, LCR circuit, obtain an expression for the resonant frequency,


Use the expression for Lorentz force acting on the charge carriers of a conductor to obtain the expression for the induced emf across the conductor of length l moving with velocity v through a magnetic field B acting perpendicular to its length.


Derive an expression for the average power dissipated in a series LCR circuit.


A coil of 40 henry inductance is connected in series with a resistance of 8 ohm and the combination is joined to the terminals of a 2 volt battery. The time constant of the circuit is ______.


In an LCR circuit having L = 8 henery. C = 0.5 µF and R = 100 ohm in series, the resonance frequency in radian/sec is


Which of the following statements about a series LCR circuit connected to an ac source is correct?


Three students, X, Y and Z performed an experiment for studying the variation of a.c. with frequency in a series LCR circuit and obtained the graphs as shown below. They all used

  • an AC source of the same emf and
  • inductance of the same value.

  1. Who used minimum resistance?
  2. In which case will the quality Q factor be maximum?
  3. What did the students conclude about the nature of impedance at resonant frequency (f0)?
  4. An ideal capacitor is connected across 220V, 50Hz, and 220V, 100Hz supplies. Find the ratio of current flowing through it in the two cases.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×