English

Use the Expression for Lorentz Force Acting on the Charge Carriers of a Conductor to Obtain the Expression for the Induced Emf Across the Conductor of Length L - Physics

Advertisements
Advertisements

Question

Use the expression for Lorentz force acting on the charge carriers of a conductor to obtain the expression for the induced emf across the conductor of length l moving with velocity v through a magnetic field B acting perpendicular to its length.

Answer in Brief

Solution

The arm PQ is moved to the left side, thus decreasing the area of the rectangular loop. This movement induces a current I as shown.

Let us consider a straight conductor moving in a uniform and time-independent magnetic field. The figure shows a rectangular conductor PQRS in which the conductor PQ is free to move. The rod PQ is moved towards the left with a constant velocity v as shown in the figure. Assume that there is no loss of energy due to friction. PQRS forms a closed circuit enclosing an area that changes as PQ moves. It is placed in a uniform magnetic field B which is perpendicular to the plane of this system. If the length RQ = x and RS l the magnetic flux ∅B enclosed by the loop PQRS will be
B = Blx

Since x is changing with time, the rate of change of flux φB will induce an emf given by: 

`ε = -(d∅_B)/(dt) = - (d(Bl"x"))/(dt)`

= `-"B"l (d"x")/(d"t") = "B"l"v"`

where we have used dx/dt = – v which is the speed of the conductor PQ. The induced emf `"B"lv"` called motional emf. Thus, we are able to produce induced emf by moving a conductor instead of varying the magnetic field, that is, by changing the magnetic flux enclosed by the circuit. It is also possible to explain the motional emf expression by invoking the Lorentz force acting on the free charge carriers of conductor PQ. Consider any arbitrary charge q in the conductor PQ. When the rod moves with speed v, the charge will also be moving with speed v in the magnetic field B. The Lorentz force on this charge is qvB in magnitude, and its direction is towards Q. All charges experience the same force, in magnitude and direction, irrespective of their position in the rod PQ.

The work done in moving the charge from P to Q is,

`W = q"vB"l`

Since emf is the work done per unit charge,

`epsilon = "W"/q`

= `"B"l"v"`

This equation gives emf induced across the rod PQ
The total force on the charge at P is given by

`vec"F"= q(vec"E" + vec"v" xx vec"B")`

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Ajmer Set 2

RELATED QUESTIONS

In a series LCR circuit connected to an a.c. source of voltage v = vmsinωt, use phasor diagram to derive an expression for the current in the circuit. Hence, obtain the expression for the power dissipated in the circuit. Show that power dissipated at resonance is maximum


An inductor-coil of resistance 10 Ω and inductance 120 mH is connected across a battery of emf 6 V and internal resistance 2 Ω. Find the charge which flows through the inductor in (a) 10 ms, (b) 20 ms and (c) 100 ms after the connections are made.


An inductor-coil of inductance 17 mH is constructed from a copper wire of length 100 m and cross-sectional area 1 mm2. Calculate the time constant of the circuit if this inductor is joined across an ideal battery. The resistivity of copper = 1.7 × 10−8 Ω-m.


A solenoid having inductance 4.0 H and resistance 10 Ω is connected to a 4.0 V battery at t = 0. Find (a) the time constant, (b) the time elapsed before the current reaches 0.63 of its steady-state value, (c) the power delivered by the battery at this instant and (d) the power dissipated in Joule heating at this instant.


Answer the following question.
What is the phase difference between the voltages across the inductor and the capacitor at resonance in the LCR circuit? 


The phase diffn b/w the current and voltage at resonance is


A coil of 0.01 henry inductance and 1 ohm resistance is connected to 200 volt, 50 Hz ac supply. Find the impedance of the circuit and time lag between max. alternating voltage and current.


A series LCR circuit containing a resistance of 120 Ω has angular resonance frequency 4 × 105 rad s-1. At resonance the voltage across resistance and inductance are 60 V and 40 V respectively. At what frequency the current in the circuit lags the voltage by 45°. Give answer in ______ × 105 rad s-1.


Draw the phasor diagram for a series LRC circuit connected to an AC source.


Draw the impedance triangle for a series LCR AC circuit and write the expressions for the impedance and the phase difference between the emf and the current.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×