हिंदी

Use the Expression for Lorentz Force Acting on the Charge Carriers of a Conductor to Obtain the Expression for the Induced Emf Across the Conductor of Length L - Physics

Advertisements
Advertisements

प्रश्न

Use the expression for Lorentz force acting on the charge carriers of a conductor to obtain the expression for the induced emf across the conductor of length l moving with velocity v through a magnetic field B acting perpendicular to its length.

संक्षेप में उत्तर

उत्तर

The arm PQ is moved to the left side, thus decreasing the area of the rectangular loop. This movement induces a current I as shown.

Let us consider a straight conductor moving in a uniform and time-independent magnetic field. The figure shows a rectangular conductor PQRS in which the conductor PQ is free to move. The rod PQ is moved towards the left with a constant velocity v as shown in the figure. Assume that there is no loss of energy due to friction. PQRS forms a closed circuit enclosing an area that changes as PQ moves. It is placed in a uniform magnetic field B which is perpendicular to the plane of this system. If the length RQ = x and RS l the magnetic flux ∅B enclosed by the loop PQRS will be
B = Blx

Since x is changing with time, the rate of change of flux φB will induce an emf given by: 

`ε = -(d∅_B)/(dt) = - (d(Bl"x"))/(dt)`

= `-"B"l (d"x")/(d"t") = "B"l"v"`

where we have used dx/dt = – v which is the speed of the conductor PQ. The induced emf `"B"lv"` called motional emf. Thus, we are able to produce induced emf by moving a conductor instead of varying the magnetic field, that is, by changing the magnetic flux enclosed by the circuit. It is also possible to explain the motional emf expression by invoking the Lorentz force acting on the free charge carriers of conductor PQ. Consider any arbitrary charge q in the conductor PQ. When the rod moves with speed v, the charge will also be moving with speed v in the magnetic field B. The Lorentz force on this charge is qvB in magnitude, and its direction is towards Q. All charges experience the same force, in magnitude and direction, irrespective of their position in the rod PQ.

The work done in moving the charge from P to Q is,

`W = q"vB"l`

Since emf is the work done per unit charge,

`epsilon = "W"/q`

= `"B"l"v"`

This equation gives emf induced across the rod PQ
The total force on the charge at P is given by

`vec"F"= q(vec"E" + vec"v" xx vec"B")`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Ajmer Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Why does current in a steady state not flow in a capacitor connected across a battery? However momentary current does flow during charging or discharging of the capacitor. Explain. 


An inductor-coil of inductance 17 mH is constructed from a copper wire of length 100 m and cross-sectional area 1 mm2. Calculate the time constant of the circuit if this inductor is joined across an ideal battery. The resistivity of copper = 1.7 × 10−8 Ω-m.


Two coils A and B have inductances 1.0 H and 2.0 H respectively. The resistance of each coil is 10 Ω. Each coil is connected to an ideal battery of emf 2.0 V at t = 0. Let iA and iBbe the currents in the two circuit at time t. Find the ratio iA / iB at (a) t = 100 ms, (b) t = 200 ms and (c) t = 1 s.


(i) An a.c. source of emf ε = 200 sin omegat is connected to a resistor of 50 Ω . calculate : 

(1) Average current (`"I"_("avg")`)

(2) Root mean square (rms) value of emf 

(ii) State any two characteristics of resonance in an LCR series circuit. 


An ac circuit as shown in the figure has an inductor of inductance L and a resistor or resistance R  connected in series. Using the phasor diagram, explain why the voltage in the circuit will lead the  current in phase.


Answer the following question.
Draw the diagram of a device that is used to decrease high ac voltage into a low ac voltage and state its working principle. Write four sources of energy loss in this device.  


A coil of 0.01 henry inductance and 1 ohm resistance is connected to 200 volt, 50 Hz ac supply. Find the impedance of the circuit and time lag between max. alternating voltage and current.


For an LCR circuit driven at frequency ω, the equation reads

`L (di)/(dt) + Ri + q/C = v_i = v_m` sin ωt

  1. Multiply the equation by i and simplify where possible.
  2. Interpret each term physically.
  3. Cast the equation in the form of a conservation of energy statement.
  4. Integrate the equation over one cycle to find that the phase difference between v and i must be acute.

Define Impedance.


When an alternating voltage of 220V is applied across device X, a current of 0.25A flows which lags behind the applied voltage in phase by π/2 radian. If the same voltage is applied across another device Y, the same current flows but now it is in phase with the applied voltage.

  1. Name the devices X and Y.
  2. Calculate the current flowing in the circuit when the same voltage is applied across the series combination of X and Y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×