Advertisements
Advertisements
प्रश्न
Two coils A and B have inductances 1.0 H and 2.0 H respectively. The resistance of each coil is 10 Ω. Each coil is connected to an ideal battery of emf 2.0 V at t = 0. Let iA and iBbe the currents in the two circuit at time t. Find the ratio iA / iB at (a) t = 100 ms, (b) t = 200 ms and (c) t = 1 s.
उत्तर
Given:-
Inductance of the coil A, LA = 1.0 H
Inductance of the coil B, LB = 2.0 H
Resistance in each coil, R = 10 Ω
The current in the LR circuit after t seconds after connecting the battery is given by
i = i0 (1 − e−t/τ)
Here,
i0 = Steady state current
τ = Time constant = `L/R`
(a) At t = 0.1 s, time constants of the coils A and B are τA and τB, respectively.
Now,
\[\tau_A = \frac{1}{10} = 0 . 1 s\]
\[ \tau_B = \frac{2}{10} = 0 . 2 s\]
Currents in the coils can be calculated as follows:-
\[i_A = i_0 (1 - e^{- t/\tau} ), \]
\[ = \frac{2}{10}\left( 1 - e^\frac{0 . 1 \times 10}{1} \right) = 0 . 2 (1 - e^{- 1} )\]
\[ = 0 . 126424111\]
\[ i_B = i_0 (1 - e^{- t/\tau} )\]
\[ = \frac{2}{10}(1 - e^{0 . 1 \times 10/2} )\]
\[ = 0 . 2 (1 - e^{- 1/2} ) = 0 . 078693\]
\[\therefore \frac{i_A}{i_B} = \frac{0 . 126411}{0 . 78693} = 1 . 6\]
(b) At t = 200 ms = 0.2 s,
iA = 0.2 (1 − e−0.2 × 10.1)
iA = 0.2 × 0.864664716
iA = 0.1729329943
iB = 0.2 (1 − e−0.2 × 10.2)
iB = 0.2 × 0.632120 = 0.126424111
\[\therefore \frac{i_A}{i_B} = \frac{0 . 172932343}{0 . 126424111} = 1 . 36 = 1 . 4\]
(c) At time t = 1 s,
iA = 0.2 (1 − e−1 × 10.1)
= 0.2 − 0.9999549
= 0.19999092
iB = 0.2 (1 − e−1 × 10.2)
= 0.2 × 0.99326 = 0.19865241
\[\therefore \frac{i_A}{i_B} = \frac{0 . 19999092}{0 . 19999092} \approx 1 . 0\]
APPEARS IN
संबंधित प्रश्न
Define 'quality factor' of resonance in a series LCR circuit. What is its SI unit?
In a series LCR circuit connected to an a.c. source of voltage v = vmsinωt, use phasor diagram to derive an expression for the current in the circuit. Hence, obtain the expression for the power dissipated in the circuit. Show that power dissipated at resonance is maximum
A series LCR circuit is connected to a source having voltage v = vm sin ωt. Derive the expression for the instantaneous current I and its phase relationship to the applied voltage.
Obtain the condition for resonance to occur. Define ‘power factor’. State the conditions under which it is (i) maximum and (ii) minimum.
The current in a discharging LR circuit without the battery drops from 2.0 A to 1.0 A in 0.10 s. (a) Find the time constant of the circuit. (b) If the inductance of the circuit 4.0 H, what is its resistance?
A constant current exists in an inductor-coil connected to a battery. The coil is short-circuited and the battery is removed. Show that the charge flown through the coil after the short-circuiting is the same as that which flows in one time constant before the short-circuiting.
(i) An a.c. source of emf ε = 200 sin omegat is connected to a resistor of 50 Ω . calculate :
(1) Average current (`"I"_("avg")`)
(2) Root mean square (rms) value of emf
(ii) State any two characteristics of resonance in an LCR series circuit.
Answer the following question.
In a series LCR circuit connected across an ac source of variable frequency, obtain the expression for its impedance and draw a plot showing its variation with frequency of the ac source.
Answer the following question.
What is the phase difference between the voltages across the inductor and the capacitor at resonance in the LCR circuit?
Use the expression for Lorentz force acting on the charge carriers of a conductor to obtain the expression for the induced emf across the conductor of length l moving with velocity v through a magnetic field B acting perpendicular to its length.
Using the phasor diagram, derive the expression for the current flowing in an ideal inductor connected to an a.c. source of voltage, v= vo sin ωt. Hence plot graphs showing the variation of (i) applied voltage and (ii) the current as a function of ωt.
If an LCR series circuit is connected to an ac source, then at resonance the voltage across ______.
In series LCR circuit, the phase angle between supply voltage and current is ______.
To reduce the resonant frequency in an LCR series circuit with a generator
A series LCR circuit containing a 5.0 H inductor, 80 µF capacitors, and 40 Ω resistor is connected to a 230 V variable frequency ac source. The angular frequencies of the source at which power is transferred to the circuit are half the power at the resonant angular frequency are likely to be ______.
To reduce the resonant frequency in an LCR series circuit with a generator ______.
A series LCR circuit driven by 300 V at a frequency of 50 Hz contains a resistance R = 3 kΩ, an inductor of inductive reactance XL = 250 πΩ, and an unknown capacitor. The value of capacitance to maximize the average power should be ______.
Which of the following statements about a series LCR circuit connected to an ac source is correct?
Draw the phasor diagram for a series LRC circuit connected to an AC source.
Select the most appropriate option with regard to resonance in a series LCR circuit.