English
Karnataka Board PUCPUC Science Class 11

An Inductor-coil of Resistance 10 ω and Inductance 120 Mh is Connected Across a Battery of Emf 6 V and Internal Resistance 2 ω. - Physics

Advertisements
Advertisements

Question

An inductor-coil of resistance 10 Ω and inductance 120 mH is connected across a battery of emf 6 V and internal resistance 2 Ω. Find the charge which flows through the inductor in (a) 10 ms, (b) 20 ms and (c) 100 ms after the connections are made.

Sum

Solution

Given:-

Inductance, L = 120 mH = 0.120 H

Resistance, R = 10 Ω

Emf of the battery, E = 6 V

Internal resistance of the battery, r = 2 Ω

The current at any instant in the LR circuit is given by

i = i0(1 − e−t)

Charge dQ flown in time dt is given by

dQ = idt = i0(1 − e−t)dt

Q = ∫ dQ

\[= \int\limits_0^t i_0 = \int\limits_0^t i_0 (1 - e^{- t/\tau} )dt\]

\[ = i_0 \left[ \int\limits_0^t dt - \int\limits_0^t e^{- t/\tau} dt \right]\]

\[ = i_0 \left[ t - \left\{ \left( - \tau \right) \left| e^{- t/\tau} \right|^t_0 \right\} \right]\]

\[ = i_0 \left[ t + \tau\left\{ e^{- t/\tau} - 1 \right\} \right]\]

The steady-state current and the time constant for the given circuit are as follows:-

\[i_0  = \frac{E}{R_{total}} = \frac{6}{10 + 2} = \frac{6}{12} = 0 . 5  A\]

\[\tau = \frac{L}{R} = \frac{120}{12} = 0 . 01  s\]

Now,

(a) At time t = 0.01 s,
Q = 0.5 [0.01 + 0.01(e−0.1/0.01 − 0.01)]
    = 0.00108 = 1.8 × 10−3 = 1.8 mΩ

(b) At t = 20 ms = 2 × 10−2 s = 0.02 s,
Q = 0.5 [0.02 + 0.01(e−0.02/0.01 − 0.01)]
    = 0.005676 = 5.7 × 10−3 C
    = 5.7 mC

(c) At t = 100 ms = 0.1 s,
Q = 0.5 [0.1 + 0.1 (e−0.1/0.01 − 0.01)]
    = 0.045 C = 45 mc

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Electromagnetic Induction - Exercises [Page 312]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 16 Electromagnetic Induction
Exercises | Q 79 | Page 312

RELATED QUESTIONS

In a series LCR circuit connected to an a.c. source of voltage v = vmsinωt, use phasor diagram to derive an expression for the current in the circuit. Hence, obtain the expression for the power dissipated in the circuit. Show that power dissipated at resonance is maximum


(i) Find the value of the phase difference between the current and the voltage in the series LCR circuit shown below. Which one leads in phase : current or voltage ?

(ii) Without making any other change, find the value of the additional capacitor C1, to be connected in parallel with the capacitor C, in order to make the power factor of the circuit unity.


A source of ac voltage v = v0 sin ωt, is connected across a pure inductor of inductance L. Derive the expressions for the instantaneous current in the circuit. Show that average power dissipated in the circuit is zero.


A series LCR circuit is connected to an ac source. Using the phasor diagram, derive the expression for the impedance of the circuit. Plot a graph to show the variation of current with frequency of the source, explaining the nature of its variation.


A coil of resistance 40 Ω is connected across a 4.0 V battery. 0.10 s after the battery is connected, the current in the coil is 63 mA. Find the inductance of the coil.


An LR circuit having a time constant of 50 ms is connected with an ideal battery of emf ε. find the time elapsed before (a) the current reaches half its maximum value, (b) the power dissipated in heat reaches half its maximum value and (c) the magnetic field energy stored in the circuit reaches half its maximum value.


An inductor of inductance 2.00 H is joined in series with a resistor of resistance 200 Ω and a battery of emf 2.00 V. At t = 10 ms, find (a) the current in the circuit, (b) the power delivered by the battery, (c) the power dissipated in heating the resistor and (d) the rate at which energy is being stored in magnetic field.


Two coils A and B have inductances 1.0 H and 2.0 H respectively. The resistance of each coil is 10 Ω. Each coil is connected to an ideal battery of emf 2.0 V at t = 0. Let iA and iBbe the currents in the two circuit at time t. Find the ratio iA / iB at (a) t = 100 ms, (b) t = 200 ms and (c) t = 1 s.


(i) An a.c. source of emf ε = 200 sin omegat is connected to a resistor of 50 Ω . calculate : 

(1) Average current (`"I"_("avg")`)

(2) Root mean square (rms) value of emf 

(ii) State any two characteristics of resonance in an LCR series circuit. 


In a series, LCR circuit, obtain an expression for the resonant frequency,


Using the phasor diagram, derive the expression for the current flowing in an ideal inductor connected to an a.c. source of voltage, v= vo sin ωt. Hence plot graphs showing the variation of (i) applied voltage and (ii) the current as a function of ωt.


Choose the correct answer from given options
The phase difference between the current and the voltage in series LCR circuit at resonance is


A series LCR circuit with R = 20 Ω, L = 1.5 H and C = 35 µF is connected to a variable-frequency 200 V ac supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transferred to the circuit in one complete cycle?


In an L.C.R. series a.c. circuit, the current ______.


At resonant frequency the current amplitude in series LCR circuit is ______.


In an LCR circuit having L = 8 henery. C = 0.5 µF and R = 100 ohm in series, the resonance frequency in radian/sec is


A series LCR circuit driven by 300 V at a frequency of 50 Hz contains a resistance R = 3 kΩ, an inductor of inductive reactance XL = 250 πΩ, and an unknown capacitor. The value of capacitance to maximize the average power should be ______.


Draw the phasor diagram for a series LRC circuit connected to an AC source.


When an alternating voltage of 220V is applied across device X, a current of 0.25A flows which lags behind the applied voltage in phase by π/2 radian. If the same voltage is applied across another device Y, the same current flows but now it is in phase with the applied voltage.

  1. Name the devices X and Y.
  2. Calculate the current flowing in the circuit when the same voltage is applied across the series combination of X and Y.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×