English

A simple pendulum of time period 1s and length l is hung from a fixed support at O, such that the bob is at a distance H vertically above A on the ground (Figure). - Physics

Advertisements
Advertisements

Question

A simple pendulum of time period 1s and length l is hung from a fixed support at O, such that the bob is at a distance H vertically above A on the ground (Figure). The amplitude is θ0. The string snaps at θ = θ0/2. Find the time taken by the bob to hit the ground. Also find distance from A where bob hits the ground. Assume θo to be small so that sin θo = θo and cos θo = 1.

Long Answer

Solution

Consider the diagram,


Let us assume t = 0 when θo = θo, then θ = θ0 cos ωt

Given a seconds pendulum ω = 2π

⇒ θ = θ0 cos 2πt  ......(i)

At time t1 let θ = θ0/2

∴ cos 2πt1 = 1/2

⇒ `t_1 = 1/6`  ......`[∵ cos 2πt_1 = cos  π/3 = 2πt_1 = π/3]`

`(dθ)/(dt) = - (θ_0 2π) sin2πt`  .....[From equation (i)]

At `t = t_1 = 1/6`

`(dθ)/(dt) = - θ_0 2π sin  (2π)/6 = - sqrt(3)πθ_0`

A negative sign shows that it is going left.

Thus, the linear velocity is `u = - sqrt(3)πθ_0l` perpendicular to the string.

The vertical component is `u_y = - sqrt(3)πθ_0l sin (θ_0/2)`

And the horizontal component is `u_x = - sqrt(3)πθ_0l cos (θ_0/2)`

At the time it snaps, the vertical height is `H^' = H + l(1 - cos (θ_0/2))`  ......(ii)

Let the time required for fall be t, then `H^' = u_yt + (1/2)gt^2`   ......(Notice g is also in the negative direction)

or `1/2 gt^2 + sqrt(3)πθ_0l sin  θ_0/2 t - H^'` = 0

∴ t = `(-sqrt(3)πθ_0l sin  θ_0/2 +- sqrt(3π^2 θ_0^2 l^2 sin^2  θ_0/2 + 2gH^'))/g`

= `(-sqrt(3)πl θ_0^2/2 +- sqrt(3π^2 (θ_0^4/4)l^2 + 2gH^'))/g`  ......`[∵ sin  θ_0/2 ≃ θ_0/2 "for small angle"]`

Given that θ0 is small, hence neglecting terms of order `θ_0^2` and higher

`t = sqrt((2H^')/g)`  .....[Fro, equation (iii)]

Now, `H^' = H + l(1 - 1)`  ......[∴ cos θ0/2 = 1]

= H   .....[From equation (ii)]

⇒ t = `sqrt((2H)/g)`

The distance travelled in the x-direction is uxt to the left of where the bob is snapped

X = Uxt = `sqrt(3) πθ_0l cos (θ_0/2) sqrt((2H)/g) s`

as θ0 is small ⇒ `cos (θ_0/2)` = 1

X = `sqrt(3) πθ_0l sqrt((2H)/g) = sqrt((6H)/g) θ_0lπ`

At the time of snapping the bob was at a horizontal distance of `l sin (θ_0/2) = l  θ_0/2`  from A.

Thus, the distance of bob from A where it meets the ground is `(lθ_0)/2 - X = (lθ_0)/2 - sqrt((6H)/g) θ_0 lpi`

= `θ_0 l(1/2 - pi sqrt((6H)/g))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Oscillations - Exercises [Page 104]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 14 Oscillations
Exercises | Q 14.40 | Page 104

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the metal bob of a simple pendulum is replaced by a wooden bob of the same size, then its time period will.....................

  1. increase
  2. remain same
  3. decrease
  4. first increase and then decrease.

Answer the following questions:

What is the frequency of oscillation of a simple pendulum mounted in a cabin that is freely falling under gravity?


A simple pendulum of length and having a bob of mass is suspended in a car. The car is moving on a circular track of radius with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?


A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation acos (ωt) and note that the initial velocity is negative.]


Define practical simple pendulum


If the particle starts its motion from mean position, the phase difference between displacement and acceleration is ______.


Which of the following statements is/are true for a simple harmonic oscillator?

  1. Force acting is directly proportional to displacement from the mean position and opposite to it.
  2. Motion is periodic.
  3. Acceleration of the oscillator is constant.
  4. The velocity is periodic.

When will the motion of a simple pendulum be simple harmonic?


The length of a second’s pendulum on the surface of earth is 1 m. What will be the length of a second’s pendulum on the moon?


A pendulum of mass m and length ℓ is suspended from the ceiling of a trolley which has a constant acceleration a in the horizontal direction as shown in the figure. Work done by the tension is ______.

(In the frame of the trolley)

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×