मराठी

A simple pendulum of time period 1s and length l is hung from a fixed support at O, such that the bob is at a distance H vertically above A on the ground (Figure). - Physics

Advertisements
Advertisements

प्रश्न

A simple pendulum of time period 1s and length l is hung from a fixed support at O, such that the bob is at a distance H vertically above A on the ground (Figure). The amplitude is θ0. The string snaps at θ = θ0/2. Find the time taken by the bob to hit the ground. Also find distance from A where bob hits the ground. Assume θo to be small so that sin θo = θo and cos θo = 1.

दीर्घउत्तर

उत्तर

Consider the diagram,


Let us assume t = 0 when θo = θo, then θ = θ0 cos ωt

Given a seconds pendulum ω = 2π

⇒ θ = θ0 cos 2πt  ......(i)

At time t1 let θ = θ0/2

∴ cos 2πt1 = 1/2

⇒ `t_1 = 1/6`  ......`[∵ cos 2πt_1 = cos  π/3 = 2πt_1 = π/3]`

`(dθ)/(dt) = - (θ_0 2π) sin2πt`  .....[From equation (i)]

At `t = t_1 = 1/6`

`(dθ)/(dt) = - θ_0 2π sin  (2π)/6 = - sqrt(3)πθ_0`

A negative sign shows that it is going left.

Thus, the linear velocity is `u = - sqrt(3)πθ_0l` perpendicular to the string.

The vertical component is `u_y = - sqrt(3)πθ_0l sin (θ_0/2)`

And the horizontal component is `u_x = - sqrt(3)πθ_0l cos (θ_0/2)`

At the time it snaps, the vertical height is `H^' = H + l(1 - cos (θ_0/2))`  ......(ii)

Let the time required for fall be t, then `H^' = u_yt + (1/2)gt^2`   ......(Notice g is also in the negative direction)

or `1/2 gt^2 + sqrt(3)πθ_0l sin  θ_0/2 t - H^'` = 0

∴ t = `(-sqrt(3)πθ_0l sin  θ_0/2 +- sqrt(3π^2 θ_0^2 l^2 sin^2  θ_0/2 + 2gH^'))/g`

= `(-sqrt(3)πl θ_0^2/2 +- sqrt(3π^2 (θ_0^4/4)l^2 + 2gH^'))/g`  ......`[∵ sin  θ_0/2 ≃ θ_0/2 "for small angle"]`

Given that θ0 is small, hence neglecting terms of order `θ_0^2` and higher

`t = sqrt((2H^')/g)`  .....[Fro, equation (iii)]

Now, `H^' = H + l(1 - 1)`  ......[∴ cos θ0/2 = 1]

= H   .....[From equation (ii)]

⇒ t = `sqrt((2H)/g)`

The distance travelled in the x-direction is uxt to the left of where the bob is snapped

X = Uxt = `sqrt(3) πθ_0l cos (θ_0/2) sqrt((2H)/g) s`

as θ0 is small ⇒ `cos (θ_0/2)` = 1

X = `sqrt(3) πθ_0l sqrt((2H)/g) = sqrt((6H)/g) θ_0lπ`

At the time of snapping the bob was at a horizontal distance of `l sin (θ_0/2) = l  θ_0/2`  from A.

Thus, the distance of bob from A where it meets the ground is `(lθ_0)/2 - X = (lθ_0)/2 - sqrt((6H)/g) θ_0 lpi`

= `θ_0 l(1/2 - pi sqrt((6H)/g))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Oscillations - Exercises [पृष्ठ १०४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
पाठ 14 Oscillations
Exercises | Q 14.40 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The period of a conical pendulum in terms of its length (l), semi-vertical angle (θ) and acceleration due to gravity (g) is:


The acceleration due to gravity on the surface of moon is 1.7 ms–2. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s? (on the surface of earth is 9.8 ms–2)


Answer the following questions:

The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that is greater than `2pisqrt(1/g)`  Think of a qualitative argument to appreciate this result.


A simple pendulum of length and having a bob of mass is suspended in a car. The car is moving on a circular track of radius with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?


A clock regulated by seconds pendulum, keeps correct time. During summer, length of pendulum increases to 1.005 m. How much will the clock gain or loose in one day?

(g = 9.8 m/s2 and π = 3.142)


Define practical simple pendulum


The period of oscillation of a simple pendulum of constant length at the surface of the earth is T. Its time period inside mine will be ______.


The relation between acceleration and displacement of four particles are given below: Which one of the particles is executing simple harmonic motion?


Two identical springs of spring constant K are attached to a block of mass m and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance x towards right, find the restoring force


In the given figure, a mass M is attached to a horizontal spring which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it. The new amplitude of oscillation will be:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×