मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Define Practical Simple Pendulum - Physics

Advertisements
Advertisements

प्रश्न

Define practical simple pendulum

उत्तर

Practical simple pendulum:

A practical simple pendulum is defined as a small heavy sphere (bob), suspended by a light and inextensible string from a rigid support.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (July)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

When the length of a simple pendulum is decreased by 20 cm, the period changes by 10%. Find the original length of the pendulum.


let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of the x-axis. Give as a function of time t for the oscillating mass if at the moment we start the stopwatch (= 0), the mass is

(a) at the mean position,

(b) at the maximum stretched position, and

(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?


The acceleration due to gravity on the surface of moon is 1.7 ms–2. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s? (on the surface of earth is 9.8 ms–2)


Answer the following questions:

A time period of a particle in SHM depends on the force constant and mass of the particle: `T = 2pi sqrt(m/k)` A simple pendulum executes SHM approximately. Why then is the time 

 


Answer the following questions:

The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that is greater than `2pisqrt(1/g)`  Think of a qualitative argument to appreciate this result.


Answer the following questions:

A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?


A clock regulated by seconds pendulum, keeps correct time. During summer, length of pendulum increases to 1.005 m. How much will the clock gain or loose in one day?

(g = 9.8 m/s2 and π = 3.142)


Show that motion of bob of the pendulum with small amplitude is linear S.H.M. Hence obtain an expression for its period. What are the factors on which its period depends?


Show that, under certain conditions, simple pendulum performs the linear simple harmonic motion.


If the particle starts its motion from mean position, the phase difference between displacement and acceleration is ______.


If the maximum velocity and acceleration of a particle executing SHM are equal in magnitude, the time period will be ______.


The period of oscillation of a simple pendulum of constant length at the surface of the earth is T. Its time period inside mine will be ______.


Which of the following statements is/are true for a simple harmonic oscillator?

  1. Force acting is directly proportional to displacement from the mean position and opposite to it.
  2. Motion is periodic.
  3. Acceleration of the oscillator is constant.
  4. The velocity is periodic.

The length of a second’s pendulum on the surface of earth is 1 m. What will be the length of a second’s pendulum on the moon?


Find the time period of mass M when displaced from its equilibrium position and then released for the system shown in figure.


A body of mass m is situated in a potential field U(x) = U0 (1 – cos αx) when U0 and α are constants. Find the time period of small oscillations.


Consider a pair of identical pendulums, which oscillate with equal amplitude independently such that when one pendulum is at its extreme position making an angle of 2° to the right with the vertical, the other pendulum makes an angle of 1° to the left of the vertical. What is the phase difference between the pendulums?


A cylindrical log of wood of height h and area of cross-section A floats in water. It is pressed and then released. Show that the log would execute S.H.M. with a time period. `T = 2πsqrt(m/(Apg))` where m is mass of the body and ρ is density of the liquid.


A tunnel is dug through the centre of the Earth. Show that a body of mass ‘m’ when dropped from rest from one end of the tunnel will execute simple harmonic motion.


A simple pendulum of time period 1s and length l is hung from a fixed support at O, such that the bob is at a distance H vertically above A on the ground (Figure). The amplitude is θ0. The string snaps at θ = θ0/2. Find the time taken by the bob to hit the ground. Also find distance from A where bob hits the ground. Assume θo to be small so that sin θo = θo and cos θo = 1.


In the given figure, a mass M is attached to a horizontal spring which is fixed on one side to a rigid support. The spring constant of the spring is k. The mass oscillates on a frictionless surface with time period T and amplitude A. When the mass is in equilibrium position, as shown in the figure, another mass m is gently fixed upon it. The new amplitude of oscillation will be:


A pendulum of mass m and length ℓ is suspended from the ceiling of a trolley which has a constant acceleration a in the horizontal direction as shown in the figure. Work done by the tension is ______.

(In the frame of the trolley)

 


A particle at the end of a spring executes simple harmonic motion with a period t1, while the corresponding period for another spring is t2. If the period of oscillation with the two springs in series is T, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×