मराठी

Two identical springs of spring constant K are attached to a block of mass m and to fixed supports as shown in figure. - Physics

Advertisements
Advertisements

प्रश्न

Two identical springs of spring constant K are attached to a block of mass m and to fixed supports as shown in figure. When the mass is displaced from equilibrium position by a distance x towards right, find the restoring force

टीपा लिहा

उत्तर

When the mass is displaced from the equilibrium position by a distance x towards the right, the right spring gets compressed by x developing a restoring force kx towards the left on the block. The left spring is stretched by an amount of x developing a restoring force kx left on the block.


F1 = – kx (for left spring)

And F2 = – kx (for right spring)

Restoring force, F = F1 + F2 = – 2kx

∴ F = 2kx towards left.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Oscillations - Exercises [पृष्ठ १०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
पाठ 14 Oscillations
Exercises | Q 14.20 | पृष्ठ १०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The period of a conical pendulum in terms of its length (l), semi-vertical angle (θ) and acceleration due to gravity (g) is:


Answer the following questions:

The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that is greater than `2pisqrt(1/g)`  Think of a qualitative argument to appreciate this result.


The period of oscillation of a simple pendulum of constant length at the surface of the earth is T. Its time period inside mine will be ______.


The relation between acceleration and displacement of four particles are given below: Which one of the particles is executing simple harmonic motion?


Which of the following statements is/are true for a simple harmonic oscillator?

  1. Force acting is directly proportional to displacement from the mean position and opposite to it.
  2. Motion is periodic.
  3. Acceleration of the oscillator is constant.
  4. The velocity is periodic.

Find the time period of mass M when displaced from its equilibrium position and then released for the system shown in figure.


A body of mass m is situated in a potential field U(x) = U0 (1 – cos αx) when U0 and α are constants. Find the time period of small oscillations.


Consider a pair of identical pendulums, which oscillate with equal amplitude independently such that when one pendulum is at its extreme position making an angle of 2° to the right with the vertical, the other pendulum makes an angle of 1° to the left of the vertical. What is the phase difference between the pendulums?


A cylindrical log of wood of height h and area of cross-section A floats in water. It is pressed and then released. Show that the log would execute S.H.M. with a time period. `T = 2πsqrt(m/(Apg))` where m is mass of the body and ρ is density of the liquid.


A pendulum of mass m and length ℓ is suspended from the ceiling of a trolley which has a constant acceleration a in the horizontal direction as shown in the figure. Work done by the tension is ______.

(In the frame of the trolley)

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×