मराठी

The relation between acceleration and displacement of four particles are given below: Which one of the particles is executing simple harmonic motion? - Physics

Advertisements
Advertisements

प्रश्न

The relation between acceleration and displacement of four particles are given below: Which one of the particles is executing simple harmonic motion?

पर्याय

  • ax = + 2x.

  • ax = + 2x2.

  • ax = – 2x2.

  • ax = – 2x.

MCQ

उत्तर

ax = – 2x.

Explanation:

In simple harmonic motion, acceleration is proportional and opposite to displacement. Applying the equation of motion 

F = ma 

a = − ω2

a ∝− x 

Hence − 2x represents SHM.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 14: Oscillations - Exercises [पृष्ठ ९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
पाठ 14 Oscillations
Exercises | Q 14.3 | पृष्ठ ९८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If the metal bob of a simple pendulum is replaced by a wooden bob of the same size, then its time period will.....................

  1. increase
  2. remain same
  3. decrease
  4. first increase and then decrease.

let us take the position of mass when the spring is unstretched as x = 0, and the direction from left to right as the positive direction of the x-axis. Give as a function of time t for the oscillating mass if at the moment we start the stopwatch (= 0), the mass is

(a) at the mean position,

(b) at the maximum stretched position, and

(c) at the maximum compressed position.

In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?


Answer the following questions:

A time period of a particle in SHM depends on the force constant and mass of the particle: `T = 2pi sqrt(m/k)` A simple pendulum executes SHM approximately. Why then is the time 

 


Answer the following questions:

A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall?


A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and v0. [Hint: Start with the equation acos (ωt) and note that the initial velocity is negative.]


Define practical simple pendulum


If the particle starts its motion from mean position, the phase difference between displacement and acceleration is ______.


When will the motion of a simple pendulum be simple harmonic?


A body of mass m is situated in a potential field U(x) = U0 (1 – cos αx) when U0 and α are constants. Find the time period of small oscillations.


A cylindrical log of wood of height h and area of cross-section A floats in water. It is pressed and then released. Show that the log would execute S.H.M. with a time period. `T = 2πsqrt(m/(Apg))` where m is mass of the body and ρ is density of the liquid.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×