Advertisements
Advertisements
Question
A wooden bookshelf has external dimensions as follows: Height = 110 cm, Depth = 25 cm, Breadth = 85 cm (see the given figure). The thickness of the plank is 5 cm everywhere. The external faces are to be polished and the inner faces are to be painted. If the rate of polishing is 20 paise per cm2 and the rate of painting is 10 paise per cm2, find the total expenses required for polishing and painting the surface of the bookshelf.
Solution
External height (l) of book self = 85 cm
External breadth (b) of book self = 25 cm
External height (h) of book self = 110 cm
External surface area of shelf while leaving out the front face of the shelf
= lh + 2 (lb + bh)
= [85 × 110 + 2 (85 × 25 + 25 × 110)] cm2
= (9350 + 9750) cm2
= 19100 cm2
Area of front face = [85 × 110 − 75 × 100 + 2 (75 × 5)] cm2
= 1850 + 750 cm2
= 2600 cm2
Area to be polished = (19100 + 2600) cm2 = 21700 cm2
Cost of polishing 1 cm2 area = Rs 0.20
Cost of polishing 21700 cm2 area Rs (21700 × 0.20) = Rs 4340
It can be observed that length (l), breadth (b), and height (h) of each row of the book shelf is 75 cm, 20 cm, and 30 cm respectively.
Area to be painted in 1 row = 2 (l + h) b + lh
= [2 (75 + 30) × 20 + 75 × 30] cm2
= (4200 + 2250) cm2
= 6450 cm2
Area to be painted in 3 rows = (3 × 6450) cm2 = 19350 cm2
Cost of painting 1 cm2 area = Rs 0.10
Cost of painting 19350 cm2 area = Rs (19350 × 0.1)
= Rs 1935
Total expense required for polishing and painting = Rs (4340 + 1935)
= Rs 6275
Therefore, it will cost Rs 6275 for polishing and painting the surface of the bookshelf.
APPEARS IN
RELATED QUESTIONS
A dome of a building is in the form of a hemisphere. From inside, it was white-washed at the cost of ₹ 4989.60 If the cost of white-washing is ₹ 20 per square meter, find the
- inside surface area of the dome,
- volume of the air inside the dome.
`["Assume "pi=22/7]`
The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?
The diameter of a sphere is decreased by 25%. By what per cent does its curved surface area decrease?
If the radius of a sphere is doubled, what is the ratio of the volume of the first sphere to that of the second sphere?
A cone and a hemisphere have equal bases and equal volumes. Find the ratio of their heights.
A measuring jar of internal diameter 10 cm is partially filled with water. Four equal spherical balls of diameter 2 cm each are dropped in it and they sink down in water completely. What will be the change in the level of water in the jar?
The diameter of a sphere is 6 cm. It is melted and drawn into a wire of diameter 0.2 cm. Find the length of the wire.
A cube of side 4 cm contains a sphere touching its side. Find the volume of the gap in between.
A capsule of medicine is in the shape of a sphere of diameter 3.5 mm. How much medicine `("in " mm^3)` is needed to fill this capsule?
Find the amount of water displaced by a solid spherical ball of diameter 4.2 cm, when it is completely immersed in water.