English

AB और AC एक वृत्त की दो बराबर जीवाएँ हैं। सिद्ध कीजिए कि ∠BAC का समद्विभाजक वृत्त के केंद्र से होकर जाता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

AB और AC एक वृत्त की दो बराबर जीवाएँ हैं। सिद्ध कीजिए कि ∠BAC का समद्विभाजक वृत्त के केंद्र से होकर जाता है।

Sum

Solution


दिया गया है - हमारे पास एक वृत्त है जिसका केंद्र O है तथा जीवा AB और AC बराबर हैं। AM, ∠BAC का समद्विभाजक है।

सिद्ध करना है - केन्द्र O, ∠BAC के समद्विभाजक पर स्थित है।

रचना - BM और CM को मिलाइये।

प्रमाण - ΔBAM और ΔCAM में,

AB = AC  ...[दिया गया है।]

∠BAM = ∠CAM  ...[दिया गया है।]

AM = AM  ...[सामान्य]

∴ ΔBAM ≅ ΔCAM   ...[SAS सर्वांगसमता द्वारा]

`\implies` BM = CM  [C.P.C.T. द्वारा]  ...(i)

और ∠BMA = ∠CMA   [C.P.C.T. द्वारा]  ...(ii)

ΔBOM और ΔCOM में,

BM = CM   ...[(i) द्वारा]

OM = OM   ...[सामान्य]

∠BMO = ∠CMO    ...[(ii) द्वारा]

∴ ΔBOM और ΔCOM   ...[SAS सर्वांगसमता द्वारा]

`\implies` ∠BOM = ∠COM  [C.P.C.T. द्वारा]  ...(iii)

चूँकि, ∠BOM + ∠COM = 180°   ...(iv)

∴ (iii) और (iv) से, ∠BOM = ∠COM = 90°

तो, AM जीवा BC का लंबवत समद्विभाजक है।

इस प्रकार, ∠BAC का समद्विभाजक अर्थात् AM, केन्द्र O से होकर जाता है।

shaalaa.com
एक वृत्त के चाप द्वारा अंतरित कोण
  Is there an error in this question or solution?
Chapter 10: वृत्त - प्रश्नावली 10.3 [Page 104]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 10 वृत्त
प्रश्नावली 10.3 | Q 4. | Page 104

RELATED QUESTIONS

आकृति में, केंद्र O वाले एक वृत्त पर तीन बिन्दु A, B और C इस प्रकार हैं कि ∠BOC = 30तथा ∠AOB = 60है। यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिंदु है, तो ∠ADC ज्ञात कीजिए।


आकृति में, एक वृत्त पर A, B, C और D चार बिंदु हैं। AC और BD एक बिंदु E पर इस प्रकार प्रतिच्छेद करते हैं कि ∠BEC = 130° तथा ∠ECD = 20° है। ∠BAC ज्ञात कीजिए।


यदि एक वृत्त के चाप AXB और CYD सर्वांगसम हैं तो AB और CD का अनुपात ज्ञात कीजिए।


यदि वृत्त की दो जीवाओं के मध्य-बिंदुओं को मिलाने वाला रेखाखंड वृत्त के केंद्र से होकर जाता है, तो सिद्ध कीजिए कि दोनों जीवाएँ समांतर है।


किसी वृत्त की एक जीवा उसकी त्रिज्या के बराबर है। इस जीवा द्वारा दीर्घ वृत्तखंड में किसी बिंदु पर अंतरित कोण ज्ञात कीजिए। 


निम्नलिखित आकृति में, AOB वृत्त का व्यास है तथा C, D और E अर्धवृत्त पर स्थित कोई तीन बिंदु हैं। ∠ACD + ∠BED का मान ज्ञात कीजिए।


निम्नलिखित आकृति में, ∠OAB = 30° और ∠OCB = 57° है। ∠BOC और ∠AOC ज्ञात कीजिए।


एक वृत्त की दो बराबर AB और CD जीवाएँ बढ़ाने पर बिंदु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि PB = PD है।


AB और AC त्रिज्या r वाले एक वृत्त की दो जीवाएँ इस प्रकार हैं कि AB = 2AC है। यदि p और q क्रमश : केंद्र से AB और AC की दूरियाँ हैं, तो सिद्ध कीजिए कि 4q2 = p2 + 3r2 है।


निम्नलिखित आकृति में, O वृत्त का केंद्र है और ∠BCO = 30° है। x और y ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×