English

किसी वृत्त की एक जीवा उसकी त्रिज्या के बराबर है। इस जीवा द्वारा दीर्घ वृत्तखंड में किसी बिंदु पर अंतरित कोण ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

किसी वृत्त की एक जीवा उसकी त्रिज्या के बराबर है। इस जीवा द्वारा दीर्घ वृत्तखंड में किसी बिंदु पर अंतरित कोण ज्ञात कीजिए। 

Sum

Solution

दिया गया है, AB एक वृत्त की जीवा है, जो वृत्त की त्रिज्या के बराबर है,

अर्थात् AB = BO  ...(i)

OA, AC और BC को मिलाइए।

चूँकि, OA = OB = वृत्त की त्रिज्या

OA = AS = BO

इस प्रकार, ΔOAB एक समबाहु त्रिभुज है।

⇒ ∠AOB = 60°  ...[समबाहु त्रिभुज का प्रत्येक कोण 60° का होता है।]


प्रमेय का उपयोग करके, एक वृत्त में, एक चाप द्वारा केंद्र पर बनाया गया कोण वृत्त के शेष भाग पर बनाए गए कोण का दुगुना होता है।

अर्थात्, ∠AOB = 2∠ACB

⇒ ∠ACB = `60^circ/2` = 30°

shaalaa.com
एक वृत्त के चाप द्वारा अंतरित कोण
  Is there an error in this question or solution?
Chapter 10: वृत्त - प्रश्नावली 10.3 [Page 105]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 9
Chapter 10 वृत्त
प्रश्नावली 10.3 | Q 14. | Page 105

RELATED QUESTIONS

आकृति में, केंद्र O वाले एक वृत्त पर तीन बिन्दु A, B और C इस प्रकार हैं कि ∠BOC = 30तथा ∠AOB = 60है। यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिंदु है, तो ∠ADC ज्ञात कीजिए।


आकृति में, ∠ABC = 69° और ∠ACB = 31° हो, तो ∠BDC ज्ञात कीजिए।


निम्नलिखित आकृति में, यदि AOB एक व्यास है और ∠ADC = 120° है, तो ∠CAB = 30° है। 


यदि एक वृत्त के चाप AXB और CYD सर्वांगसम हैं तो AB और CD का अनुपात ज्ञात कीजिए।


AB और AC एक वृत्त की दो बराबर जीवाएँ हैं। सिद्ध कीजिए कि ∠BAC का समद्विभाजक वृत्त के केंद्र से होकर जाता है।


निम्नलिखित आकृति में, ∠ADC = 130° और जीवा BC = जीवा BE है। ∠CBE ज्ञात कीजिए। 


निम्नलिखित आकृति में, ∠OAB = 30° और ∠OCB = 57° है। ∠BOC और ∠AOC ज्ञात कीजिए।


यदि ABC किसी वृत्त के अंतर्गत एक समबाहु त्रिभुज है तथा P लघु चाप BC पर स्थित कोई बिंदु है, जो B या C के संपाती नहीं है, तो सिद्ध कीजिए कि PA कोण BPC का समद्विभाजक हैं।


AB और AC त्रिज्या r वाले एक वृत्त की दो जीवाएँ इस प्रकार हैं कि AB = 2AC है। यदि p और q क्रमश : केंद्र से AB और AC की दूरियाँ हैं, तो सिद्ध कीजिए कि 4q2 = p2 + 3r2 है।


निम्नलिखित आकृति में, O वृत्त का केंद्र है और ∠BCO = 30° है। x और y ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×