English

Abcd is a Parallelogram with Ac and Bd as Diagonals. Then, → a C − → B D = - Mathematics

Advertisements
Advertisements

Question

ABCD is a parallelogram with AC and BD as diagonals.
Then, \[\overrightarrow{AC} - \overrightarrow{BD} =\] 

Options

  • \[4 \overrightarrow{AB}\]

  • \[3 \overrightarrow{AB}\]
  • \[2 \overrightarrow{AB}\]

     

  • \[\overrightarrow{AB}\]
MCQ

Solution

\[2 \overrightarrow{AB}\]
Given: ABCD, a parallelogram with diagonals AC and BD.
Then,

\[\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} \]

\[ \overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD} \]

\[ \Rightarrow \overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB}\]
∴ \[\overrightarrow{AC} - \overrightarrow{BD} = \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AD} + \overrightarrow{AB} = 2 \overrightarrow{AB}\]                        [∵ \[\overrightarrow{AD} = \overrightarrow{BC}\]]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Algebra of Vectors - MCQ [Page 79]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 23 Algebra of Vectors
MCQ | Q 16 | Page 79

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If `veca=xhati+2hatj-zhatk and vecb=3hati-yhatj+hatk` are two equal vectors ,then write the value of x+y+z


if `veca = 2hati - hatj - 2hatk " and " vecb = 7hati + 2hatj - 3hatk`, , then express `vecb` in the form of `vecb = vec(b_1) + vec(b_2)`, where `vec(b_1)`  is parallel to `veca` and `vec(b_2)` is perpendicular to `veca`


If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{b} = 2 \hat{i} + 4 \hat{j} + 9 \hat{k} ,\]  find a unit vector parallel to \[\overrightarrow{a} + \overrightarrow{b}\].


Find the position vector of the mid-point of the line segment AB, where A is the point (3, 4, −2) and B is the point (1, 2, 4).


The vector equation of the plane passing through \[\vec{a} , \vec{b} , \vec{c} ,\text{ is }\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} ,\] provided that

 


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] and \[\vec{d}\] are the position vectors of points A, B, C, D such that no three of them are collinear and \[\vec{a} + \vec{c} = \vec{b} + \vec{d} ,\] then ABCD is a


If ABCDEF is a regular hexagon, then \[\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}\] equals

 


Find the position vector of the mid-point of the vector joining the points

\[P \left( 2 \hat{i} - 3\hat{ j} + 4 \hat{k} \right)\text{ and } Q \left( 4 \hat{i} + \hat{j} - 2 \hat{k} \right) .\]

Show that the four points having position vectors

\[6 \hat { i} - 7 \hat { j} , 16 \hat {i} - 19 \hat {j}- 4 \hat {k} , 3 \hat {j} - 6 \hat {k} , 2 \hat {i} + 5 \hat {j} + 10 \hat {k}\] are not coplanar.


Find the value of λ for which the four points with position vectors `6hat"i" - 7hat"j", 16hat"i" - 19hat"j" - 4hat"k" , lambdahat"j" - 6hat"k"  "and"  2hat"i" - 5hat"j" + 10hat"k"` are coplanar.


Find a unit vector perpendicular to each of the vectors `veca + vecb  "and"  veca - vecb  "where"  veca = 3hati + 2hatj + 2hatk and vecb = i + 2hatj - 2hatk` 


OABCDE is a regular hexagon. The points A and B have position vectors `bar"a"` and `bar"b"` respectively referred to the origin O. Find, in terms of `bar"a"` and `bar"b"` the position vectors of C, D and E.


Express `- hat"i" - 3hat"j" + 4hat"k"` as the linear combination of the vectors `2hat"i" + hat"j" - 4hat"k", 2hat"i" - hat"j" + 3hat"k"` and `3hat"i" + hat"j" - 2hat"k"`


If the sum of two unit vectors is itself a unit vector, then the magnitude of their difference is ______.


If a parallelogram is constructed on the vectors `bar"a" = 3bar"p" - bar"q", bar"b" = bar"p" + 3bar"q" and |bar"p"| = |bar"q"| = 2` and angle between `bar"p" and bar"q"` is `pi/3,` and angle between lengths of the sides is `sqrt7 : sqrt13`.


Express the vector `bar"a" = 5hat"i" - 2hat"j" + 5hat"k"` as a sum of two vectors such that one is parallel to the vector `bar"b" = 3hat"i" + hat"k"` and other is perpendicular to `bar"b"`.


Show that the vector area of a triangle ABC, the position vectors of whose vertices are `bar"a", bar"b" and bar"c"` is `1/2[bar"a" xx bar"b" + bar"b" xx bar"c" + bar"c" xx bar"a"]`.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a" xx (bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`|bar"a"|(bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b" + bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`|bar"a"|. (bar"b" + bar"c")`


If A, B, C and D are (3, 7, 4), (5, -2, - 3), (- 4, 5, 6) and(1, 2, 3) respectively, then the volume of the parallelopiped with AB, AC and AD as the co-terminus edges, is ______ cubic units.


Using vectors, prove that cos (A – B) = cosA cosB + sinA sinB.


The 2 vectors `hat"j" + hat"k"` and `3hat"i" - hat"j" + 4hat"k"` represents the two sides AB and AC, respectively of a ∆ABC. The length of the median through A is ______.


If `vec"a", vec"b", vec"c"` determine the vertices of a triangle, show that `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` gives the vector area of the triangle. Hence deduce the condition that the three points `vec"a", vec"b", vec"c"` are collinear. Also find the unit vector normal to the plane of the triangle.


Classify the following measures as scalar and vector.

40°


In Figure, identify the following vector.

Equal


In Figure, identify the following vector.

 

Collinear but not equal


If `veca` and `vecb` are two collinear vectors then which of the following are incorrect.


If points P(4, 5, x), Q(3, y, 4) and R(5, 8, 0) are collinear, then the value of x + y is ______.


In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of  `bar a ` and `barb.`

  1. `bar("P""R")` 
  2. `bar("P""M")`
  3. `bar("Q""M")`

Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk` and `3hati + 4hatk` form a triangle or not.


Check whether the vectors `2hati+2hatj+3hatk,-3hati+3hatj+2hatk` and `3hati+4hatk` form a triangle or not.


In the triangle PQR, `bar(PQ)=2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bara and barb`.

(i) `bar(PR)`  (ii) `bar(PM)`  (iii) `bar(QM)`


In the triangle PQR, `bar"PQ" = 2 bar" a" and bar"QR" = 2 bar"b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`


In the triangle PQR, `bar(PQ)`= 2`bar a` and `bar(QR)`= 2`bar b` . The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

  1.  `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×