English

ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls. - Mathematics

Advertisements
Advertisements

Question

ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.


If the cost of asbestos sheet roofing is Rs. 20 per m2, find the cost of roofing.

Sum

Solution

Asbestos sheets are spread on the area formed by the rectangle with CD and DE as lengths.
In ΔCDE, by Pythagoras theorem,
DE2 = `("perpendicular")^2 + ("Ab"/2)^2`

DE2 = `3^2 + (8/2)^2`
DE2 = 32 + 42
DE2 = 25
∴ DE = CD = 5m
Area of asbestos sheets = DE x length + Dc x length
Area of asbestos sheet
= 2 x 5 x 50
= 500m2
Cost of roofing
= Area x rate
= 500 x 20
= Rs.10,000
∴ The cost of roofing is Rs.10,000.

shaalaa.com
Cross Section of Solid Shapes
  Is there an error in this question or solution?
Chapter 25: Surface Areas and Volume of Solids - Exercise 25.3

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 25 Surface Areas and Volume of Solids
Exercise 25.3 | Q 10.2

RELATED QUESTIONS

The following figure shows a solid of uniform cross-section. Find the volume of the solid. All measurements are in centimeters.
Assume that all angles in the figures are right angles.


A swimming pool is 18 m long and 8 m wide. Its deep and shallow ends are 2 m and 1.2 m respectively. Find the capacity of the pool, assuming that the bottom of the pool slopes uniformly. 


A school auditorium is 40 m long, 30 m broad and 12 m high. If each student requires 1.2 m2 of the floor area; find the maximum number of students that can be accommodated in this auditorium. Also, find the volume of air available in the auditorium, for each student. 


Find the length of a solid cylinder of diameter 4 cm when recast into a hollow cylinder of outer diameter 10 cm, thickness 0.25 cm and length 21 cm? Give your answer correct to two decimal places.


The figure represents the cross section of a swimming pool 10 m broad, 2 m deep at one end, 3 m deep at the other end. Calculate the volume of water it will hold when full, given that its length is 40 m.


A swimming pool is 50 m long and 15 m wide. Its shallow and deep ends are 1.5 m and 4.5 m respectively. If the bottom of the pool slopes uniformly, find the amount of water in kilolitres required to fill the pool (1 m3 = 1000 liters).


The figure shows the cross section of 0.2 m a concrete wall to be constructed. It is 0.2 m wide at the top, 2.0 m wide at the bottom and its height is 4.0 m, and its length is 40 m. Calculate the cross sectional area


ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.

Calculate the total volume content of the shed.


ABCDE is the end view of a factory shed which is 50 m long. The roofing of the shed consists of asbestos sheets as shown in the figure. The two ends of the shed are completely closed by brick walls.
Find the total surface area (including roofing) of the shed.


The cross section of a swimming pool is a trapezium whose shallow and deep ends are 1 m and 3 m respectively. If the length of the pool is 50 m and its width is 1.5 m, calculate the volume of water it holds.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×