English

An Experiment Consists of Recording Boy-girl Composition of Families with 2 Children. What is the Sample Space If We Are Interested in Knowing Whether It is a Boy Or Girl in the Order of Their Births? - Mathematics

Advertisements
Advertisements

Question

An experiment consists of recording boy-girl composition of families with 2 children.

(i) What is the sample space if we are interested in knowing whether it is a boy or girl in the order of their births?

(ii) What is the sample space if we are interested in the number of girls in the family?

Solution

(i) When the order of the birth of a girl or a boy is considered, the sample space is given by S = {GG, GB, BG, BB}

(ii) Since the maximum number of children in each family is 2, a family can either have 2 girls or 1 girl or no girl. Hence, the required sample space is S = {0, 1, 2}

shaalaa.com
  Is there an error in this question or solution?
Chapter 16: Probability - Exercise 16.1 [Page 386]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 16 Probability
Exercise 16.1 | Q 8 | Page 386

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Describe the sample space for the indicated experiment: A die is thrown two times.


A coin is tossed once. Write its sample space

 

Write the sample space for the experiment of tossing a coin four times.

 

An experiment consists of tossing a coin and then tossing it second time if head occurs. If a tail occurs on the first toss, then a die is tossed once. Find the sample space.

 

A coin is tossed repeatedly until a tail comes up for the first time. Write the sample space for this experiment.


2 boys and 2 girls are in room P and 1 boy 3 girls are in room Q. Write the sample space for the experiment in which a room is selected and then a person.

 

Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.
(i) Which pairs of events are mutually exclusive?

 


Three coins are tossed once. Describe the events associated with this random experiment: 

A = Getting three heads
B = Getting two heads and one tail
C = Getting three tails
D = Getting a head on the first coin.

(iii) Which events are compound events?

 

A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a jack, queen or a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is neither a heart nor a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is spade or an ace


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is  neither an ace nor a king


A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is a black card


In shuffling a pack of 52 playing cards, four are accidently dropped; find the chance that the missing cards should be one from each suit.


A bag contains 7 white, 5 black and 4 red balls. If two balls are drawn at random, find the probability that both the balls are of the same colour.

 

A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that one is red and two are white


A bag contains 6 red, 4 white and 8 blue balls. If three balls are drawn at random, find the probability that two are blue and one is red


Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain:
(i) just one ace


Five cards are drawn from a pack of 52 cards. What is the chance that these 5 will contain at least one ace?

 

A committee of two persons is selected from two men and two women. What is the probability that the committee will have one man?


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is a multiple of 4?


20 cards are numbered from 1 to 20. One card is drawn at random. What is the probability that the number on the cards is not a multiple of 6?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has  all boys?


A class consists of 10 boys and 8 girls. Three students are selected at random. What is the probability that the selected group has  at least one girl?


A bag contains tickets numbered from 1 to 20. Two tickets are drawn. Find the probability that  both the tickets have prime numbers on them


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Using the addition law of probability, find P(A ∪ B).


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 List the composition of the event A ∪ B, and calculate P(A ∪ B) by addting the probabilities of elementary events.


A sample space consists of 9 elementary events E1E2E3, ..., E9 whose probabilities are
P(E1) = P(E2) = 0.08, P(E3) = P(E4) = P(E5) = 0.1, P(E6) = P(E7) = 0.2, P(E8) = P(E9) = 0.07
Suppose A = {E1E5E8}, B = {E2E5E8, E9}   

 Calculate \[P\left( \bar{ B} \right)\]  from P(B), also calculate \[P\left( \bar{ B } \right)\]  directly from the elementary events of \[\bar{ B } \] .

 


n (≥ 3) persons are sitting in a row. Two of them are selected. Write the probability that they are together.

 

What is the probability that a leap year will have 53 Fridays or 53 Saturdays?

 

Three dice are thrown simultaneously. What is the probability of getting 15 as the sum?

 

A bag contains 3 red, 4 white and 5 blue balls. All balls are different. Two balls are drawn at random. The probability that they are of different colour is


What is the probability that a randomly chosen two-digit positive integer is a multiple of 3?


A single letter is selected at random from the word 'PROBABILITY'. The probability that it is a vowel is ______.


Two boxes are containing 20 balls each and each ball is either black or white. The total number of black ball in the two boxes is different from the total number of white balls. One ball is drawn at random from each box and the probability that both are white is 0.21 and the probability that both are black is k, then `(100"k")/13` is equal to ______.


Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×