English
Karnataka Board PUCPUC Science Class 11

An Ideal Gas is Taken Through a Process in Which the Pressure and the Volume Are Changed According to the Equation P = Kv. - Physics

Advertisements
Advertisements

Question

An ideal gas is taken through a process in which the pressure and the volume are changed according to the equation p = kV. Show that the molar heat capacity of the gas for the process is given by `"C" ="C"_"v" +"R"/2.`

Answer in Brief

Solution

Relation between pressure and volume of a gas is P = kV.
Ideal gas equation is PV = nRT.

`=> ("n""R""T")/"V" = "k""V"`

`=> "n""R""T" = "k""V"^2`

For simplicity, take the number of moles of  a gas, n = 1.

⇒ RdT = 2 kVdV

`=> ("R""d""T")/ (2"k""V") = "d""V"`

From the first law of thermodynamics,

dQ = dU + dW

⇒ nCPdT = CVdT + PdV

`=> "n""C"_"p""d""T"   = "C"_"v""d""T" +("P""R""d""T")/(2"k""V")`

`=> 1 xx"C"_"P" ="C"_"v" +("P""R")/(2"k""v")`

`therefore "C"_"p" = "C"_"v"+"R"/2`

shaalaa.com
Interpretation of Temperature in Kinetic Theory - Introduction of Kinetic Theory of an Ideal Gas
  Is there an error in this question or solution?
Chapter 5: Specific Heat Capacities of Gases - Exercises [Page 78]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 5 Specific Heat Capacities of Gases
Exercises | Q 9 | Page 78

RELATED QUESTIONS

The energy of a given sample of an ideal gas depends only on its


Which of the following quantities is zero on an average for the molecules of an ideal gas in equilibrium?


Consider the quantity \[\frac{MkT}{pV}\] of an ideal gas where M is the mass of the gas. It depends on the


A sample of 0.177 g of an ideal gas occupies 1000 cm3 at STP. Calculate the rms speed of the gas molecules.


The ratio of the molar heat capacities of an ideal gas is Cp/Cv = 7/6. Calculate the change in internal energy of 1.0 mole of the gas when its temperature is raised by 50 K (a) keeping the pressure constant (b) keeping the volume constant and (c) adiaba


An amount Q of heat is added to a monatomic ideal gas in a process in which the gas performs a work Q/2 on its surrounding. Find the molar heat capacity for the process


An ideal gas (Cp / Cv = γ) is taken through a process in which the pressure and the volume vary as p = aVb. Find the value of b for which the specific heat capacity in the process is zero.


Consider a given sample of an ideal gas (Cp/Cv = γ) having initial pressure p0 and volume V0. (a) The gas is  isothermally taken to a pressure p0/2 and from there, adiabatically to a pressure p0/4. Find the final volume. (b) The gas is brought back to its initial state. It is adiabatically taken to a pressure p0/2 and from there, isothermally to a pressure p0/4. Find the final volume.


Two samples A and B, of the same gas have equal volumes and pressures. The gas in sample A is expanded isothermally to double its volume and the gas in B is expanded adiabatically to double its volume. If the work done by the gas is the same for the two cases, show that γ satisfies the equation 1 − 21−γ = (γ − 1) ln2.


1 litre of an ideal gas (γ = 1.5) at 300 K is suddenly compressed to half its original volume. (a) Find the ratio of the final pressure to the initial pressure. (b) If the original pressure is 100 kPa, find the work done by the gas in the process. (c) What is the change in internal energy? (d) What is the final temperature? (e) The gas is now cooled to 300 K keeping its pressure constant. Calculate the work done during the process. (f) The gas is now expanded isothermally to achieve its original volume of 1 litre. Calculate the work done by the gas. (g) Calculate the total work done in the cycle.


Figure shows a cylindrical tube with adiabatic walls and fitted with an adiabatic separator. The separator can be slid into the tube by an external mechanism. An ideal gas (γ = 1.5) is injected in the two sides at equal pressures and temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio 1 : 3. Find the ratio of the temperatures in the two parts of the vessel.


A cubic vessel (with faces horizontal + vertical) contains an ideal gas at NTP. The vessel is being carried by a rocket which is moving at a speed of 500 ms–1 in vertical direction. The pressure of the gas inside the vessel as observed by us on the ground ______.


1 mole of an ideal gas is contained in a cubical volume V, ABCDEFGH at 300 K (Figure). One face of the cube (EFGH) is made up of a material which totally absorbs any gas molecule incident on it. At any given time ______.


ABCDEFGH is a hollow cube made of an insulator (Figure). Face ABCD has positive charge on it. Inside the cube, we have ionized hydrogen. The usual kinetic theory expression for pressure ______.

  1. will be valid.
  2. will not be valid since the ions would experience forces other than due to collisions with the walls.
  3. will not be valid since collisions with walls would not be elastic.
  4. will not be valid because isotropy is lost.

Diatomic molecules like hydrogen have energies due to both translational as well as rotational motion. From the equation in kinetic theory `pV = 2/3` E, E is ______.

  1. the total energy per unit volume.
  2. only the translational part of energy because rotational energy is very small compared to the translational energy.
  3. only the translational part of the energy because during collisions with the wall pressure relates to change in linear momentum.
  4. the translational part of the energy because rotational energies of molecules can be of either sign and its average over all the molecules is zero.

The container shown in figure has two chambers, separated by a partition, of volumes V1 = 2.0 litre and V2 = 3.0 litre. The chambers contain µ1 = 4.0 and µ2 = 5.0 moles of a gas at pressures p1 = 1.00 atm and p2 = 2.00 atm. Calculate the pressure after the partition is removed and the mixture attains equilibrium.

V1 V2
µ1, p1 µ2
  p2

We have 0.5 g of hydrogen gas in a cubic chamber of size 3 cm kept at NTP. The gas in the chamber is compressed keeping the temperature constant till a final pressure of 100 atm. Is one justified in assuming the ideal gas law, in the final state?

(Hydrogen molecules can be consider as spheres of radius 1 Å).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×