English
Karnataka Board PUCPUC Science Class 11

Wo Samples a and B, of the Same Gas Have Equal Volumes and Pressures. - Physics

Advertisements
Advertisements

Question

Two samples A and B, of the same gas have equal volumes and pressures. The gas in sample A is expanded isothermally to double its volume and the gas in B is expanded adiabatically to double its volume. If the work done by the gas is the same for the two cases, show that γ satisfies the equation 1 − 21−γ = (γ − 1) ln2.

Answer in Brief

Solution

Let,
Initial pressure of the gas = P1
Initial volume of the gas = V1 
Final pressure of the gas= P2 
Final volume of the gas = V2 
Given, V2 = 2 V1, for each case.
In an isothermal expansion process,
work done = `"n""R""T"_1   "l""n"  "V"_2/"V"_1" `

Adiabatic work done,

`"W" = ("P"_1"V"_1 - "P"_2"V"_2)/ (gamma -1 )`

It is given that same work is done in both cases.
So, 

`"n""R""T"_1   "l""n" ("V"_2/"V"_1) =( "P"_1 "V"_1 - "P"_2"V"_2)/ (gamma -1)` ..(1)

In an adiabatic process,

`"P"_2 = "P"_1 ("V"_1/"V"_2)^gamma ="P"_1(1/2)^gamma`

From eq (1),

`"n""R""T"_1  "l""n" 2 = ("P"_1"V"_1(1-1/2^gamma xx 2)) /(gamma -1)`

and nRT1 = P1V1

So, ln  2 =` (1 - 1/(2^gamma) . 2)/ (gamma -1)`

Or (γ − 1) ln 2 = 1 − 21−γ

shaalaa.com
Interpretation of Temperature in Kinetic Theory - Introduction of Kinetic Theory of an Ideal Gas
  Is there an error in this question or solution?
Chapter 5: Specific Heat Capacities of Gases - Exercises [Page 79]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 5 Specific Heat Capacities of Gases
Exercises | Q 24 | Page 79

RELATED QUESTIONS

Which of the following quantities is zero on an average for the molecules of an ideal gas in equilibrium?


Consider the quantity \[\frac{MkT}{pV}\] of an ideal gas where M is the mass of the gas. It depends on the


Find the number of molecules in 1 cm3 of an ideal gas at 0°C and at a pressure of 10−5mm of mercury.

Use R = 8.31 J K-1 mol-1


A sample of 0.177 g of an ideal gas occupies 1000 cm3 at STP. Calculate the rms speed of the gas molecules.


A vessel containing one mole of a monatomic ideal gas (molecular weight = 20 g mol−1) is moving on a floor at a speed of 50 m s−1. The vessel is stopped suddenly. Assuming that the mechanical energy lost has gone into the internal energy of the gas, find the rise in its temperature.


The ratio of the molar heat capacities of an ideal gas is Cp/Cv = 7/6. Calculate the change in internal energy of 1.0 mole of the gas when its temperature is raised by 50 K (a) keeping the pressure constant (b) keeping the volume constant and (c) adiaba


An amount Q of heat is added to a monatomic ideal gas in a process in which the gas performs a work Q/2 on its surrounding. Find the molar heat capacity for the process


An ideal gas is taken through a process in which the pressure and the volume are changed according to the equation p = kV. Show that the molar heat capacity of the gas for the process is given by `"C" ="C"_"v" +"R"/2.`


An ideal gas (Cp / Cv = γ) is taken through a process in which the pressure and the volume vary as p = aVb. Find the value of b for which the specific heat capacity in the process is zero.


Two ideal gases have the same value of Cp / Cv = γ. What will be the value of this ratio for a mixture of the two gases in the ratio 1 : 2?


The volume of an ideal gas (γ = 1.5) is changed adiabatically from 4.00 litres to 3.00 litres. Find the ratio of (a) the final pressure to the initial pressure and (b) the final temperature to the initial temperature.


Consider a given sample of an ideal gas (Cp/Cv = γ) having initial pressure p0 and volume V0. (a) The gas is  isothermally taken to a pressure p0/2 and from there, adiabatically to a pressure p0/4. Find the final volume. (b) The gas is brought back to its initial state. It is adiabatically taken to a pressure p0/2 and from there, isothermally to a pressure p0/4. Find the final volume.


Two vessels A and B of equal volume V0 are connected by a narrow tube that can be closed by a valve. The vessels are fitted with pistons that can be moved to change the volumes. Initially, the valve is open and the vessels contain an ideal gas (Cp/Cv = γ) at atmospheric pressure p0 and atmospheric temperature T0. The walls of vessel A are diathermic and those of B are adiabatic. The valve is now closed and the pistons are slowly pulled out to increase the volumes of the vessels to double the original value. (a) Find the temperatures and pressures in the two vessels. (b) The valve is now opened for sufficient time so that the gases acquire a common temperature and pressure. Find the new values of the temperature and pressure.


An ideal gas of density 1.7 × 10−3 g cm−3 at a pressure of 1.5 × 105 Pa is filled in a Kundt's tube. When the gas is resonated at a frequency of 3.0 kHz, nodes are formed at a separation of 6.0 cm. Calculate the molar heat capacities Cp and Cv of the gas.


In a diatomic molecule, the rotational energy at a given temperature ______.

  1. obeys Maxwell’s distribution.
  2. have the same value for all molecules.
  3. equals the translational kinetic energy for each molecule.
  4. is (2/3)rd the translational kinetic energy for each molecule.

We have 0.5 g of hydrogen gas in a cubic chamber of size 3 cm kept at NTP. The gas in the chamber is compressed keeping the temperature constant till a final pressure of 100 atm. Is one justified in assuming the ideal gas law, in the final state?

(Hydrogen molecules can be consider as spheres of radius 1 Å).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×