English
Karnataka Board PUCPUC Science Class 11

An Amount Q of Heat is Added to a Monatomic Ideal Gas in a Process in Which the Gas Performs a Work Q/2 on Its Surrounding. - Physics

Advertisements
Advertisements

Question

An amount Q of heat is added to a monatomic ideal gas in a process in which the gas performs a work Q/2 on its surrounding. Find the molar heat capacity for the process

Answer in Brief

Solution

Given:
Amount of heat given to the gas = Q
So, ∆Q = Q

Work done by the gas, Δ W = `Q/2`

From the first law of thermodynamics,

ΔQ = ΔW +Δ U

`=> triangle "U" = "Q" - "Q"/2 = "Q"/2`

For a monoatomic gas,

`triangle "U"= 3/2 "n""R""d""T"`

`=> "Q"/2 = "n""d""T" xx3/2 "R"`

⇒ Q = 3nRdT

Again, for expansion at constant pressure,
Q = nCpdT, 
where Cp is the molar heat capacity at constant pressure.
So, 3RndT = nCpdT
⇒ Cp = 3R

shaalaa.com
Interpretation of Temperature in Kinetic Theory - Introduction of Kinetic Theory of an Ideal Gas
  Is there an error in this question or solution?
Chapter 5: Specific Heat Capacities of Gases - Exercises [Page 78]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 5 Specific Heat Capacities of Gases
Exercises | Q 8 | Page 78

RELATED QUESTIONS

The energy of a given sample of an ideal gas depends only on its


Calculate the volume of 1 mole of an ideal gas at STP.


Find the number of molecules in 1 cm3 of an ideal gas at 0°C and at a pressure of 10−5mm of mercury.

Use R = 8.31 J K-1 mol-1


Let Q and W denote the amount of heat given to an ideal gas and the work done by it in an isothermal process.


Let Q and W denote the amount of heat given to an ideal gas and the work done by it in an adiabatic process.
(a) Q = 0
(b) W = 0
(c) Q = W
(d) Q ≠ W


A rigid container of negligible heat capacity contains one mole of an ideal gas. The temperature of the gas increases by 1° C if 3.0 cal of heat is added to it. The gas may be
(a) helium
(b) argon
(c) oxygen
(d) carbon dioxide


The figure shows a cylindrical container containing oxygen (γ = 1.4) and closed by a 50-kg frictionless piston. The area of cross-section is 100 cm2, atmospheric pressure is 100 kPa and g is 10 m s−2. The cylinder is slowly heated for some time. Find the amount of heat supplied to the gas if the piston moves out through a distance of 20 cm.


An ideal gas (Cp / Cv = γ) is taken through a process in which the pressure and the volume vary as p = aVb. Find the value of b for which the specific heat capacity in the process is zero.


Half mole of an ideal gas (γ = 5/3) is taken through the cycle abcda, as shown in the figure. Take  `"R" = 25/3"J""K"^-1 "mol"^-1 `. (a) Find the temperature of the gas in the states a, b, c and d. (b) Find the amount of heat supplied in the processes ab and bc. (c) Find the amount of heat liberated in the processes cd and da.


An ideal gas (γ = 1.67) is taken through the process abc shown in the figure. The temperature at point a is 300 K. Calculate (a) the temperatures at b and c (b) the work done in the process (c) the amount of heat supplied in the path ab and in the path bcand (d) the change in the internal energy of the gas in the process.


Consider a given sample of an ideal gas (Cp/Cv = γ) having initial pressure p0 and volume V0. (a) The gas is  isothermally taken to a pressure p0/2 and from there, adiabatically to a pressure p0/4. Find the final volume. (b) The gas is brought back to its initial state. It is adiabatically taken to a pressure p0/2 and from there, isothermally to a pressure p0/4. Find the final volume.


Figure shows a cylindrical tube with adiabatic walls and fitted with an adiabatic separator. The separator can be slid into the tube by an external mechanism. An ideal gas (γ = 1.5) is injected in the two sides at equal pressures and temperatures. The separator remains in equilibrium at the middle. It is now slid to a position where it divides the tube in the ratio 1 : 3. Find the ratio of the temperatures in the two parts of the vessel.


The figure shows an adiabatic cylindrical tube of volume V0 divided in two parts by a frictionless adiabatic separator. Initially, the separator is kept in the middle, an ideal gas at pressure p1 and temperature T1 is injected into the left part and another ideal gas at pressure p2 and temperature T2 is injected into the right part. Cp/Cv = γ is the same for both the gases. The separator is slid slowly and is released at a position where it can stay in equilibrium. Find (a) the volumes of the two parts (b) the heat given to the gas in the left part and (c) the final common pressure of the gases.


Diatomic molecules like hydrogen have energies due to both translational as well as rotational motion. From the equation in kinetic theory `pV = 2/3` E, E is ______.

  1. the total energy per unit volume.
  2. only the translational part of energy because rotational energy is very small compared to the translational energy.
  3. only the translational part of the energy because during collisions with the wall pressure relates to change in linear momentum.
  4. the translational part of the energy because rotational energies of molecules can be of either sign and its average over all the molecules is zero.

In a diatomic molecule, the rotational energy at a given temperature ______.

  1. obeys Maxwell’s distribution.
  2. have the same value for all molecules.
  3. equals the translational kinetic energy for each molecule.
  4. is (2/3)rd the translational kinetic energy for each molecule.

When an ideal gas is compressed adiabatically, its temperature rises: the molecules on the average have more kinetic energy than before. The kinetic energy increases ______.

  1. because of collisions with moving parts of the wall only.
  2. because of collisions with the entire wall.
  3. because the molecules gets accelerated in their motion inside the volume.
  4. because of redistribution of energy amongst the molecules.

We have 0.5 g of hydrogen gas in a cubic chamber of size 3 cm kept at NTP. The gas in the chamber is compressed keeping the temperature constant till a final pressure of 100 atm. Is one justified in assuming the ideal gas law, in the final state?

(Hydrogen molecules can be consider as spheres of radius 1 Å).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×