English
Karnataka Board PUCPUC Science Class 11

Three Samples A, B and C of the Same Gas (γ = 1.5) Have Equal Volumes and Temperatures. - Physics

Advertisements
Advertisements

Question

Three samples A, B and C of the same gas (γ = 1.5) have equal volumes and temperatures. The volume of each sample is doubled, the process being isothermal for A, adiabatic for B and isobaric for C. If the final pressures are equal for the three samples, find the ratio of the initial pressures.

Answer in Brief

Solution

here are three gases A, B and C.
It is given that initially,
VA = VB = VC    and     TA = TB = TC .
For A, the process is isothermal and for an isothermal process, PV = constant.
PAVA = P'A2VA

`"P'"_"A" = "P"_"A" xx 1/2`

For B, the process is adiabatic. So,
PBVBγ = PB'(2VB)γ

`=> "P'"_"B" = ("P"_"B")/2^1.5`


For C, the process is isobaric, which implies that the pressure will remain constant.
So, using the ideal gas equation

`"P" = ("n""R""T")/"V"` we get 

`("V"_"c")/"T"_"c" = ("V'"_"c")/"T'"_"c" =>
("V"_"c") /"T"_"c" = (2"V"_"c")/"T'"_"c"`

⇒ TC' = 2TC
As the final pressures are equal,

`"P"_"A"/ 2 = "P"_"B"/2^1.5 ="P"_"c"`

⇒ PA : PB :PC = 2 : 21.5 : 1

shaalaa.com
Kinetic Theory of Gases - Concept of Pressure
  Is there an error in this question or solution?
Chapter 5: Specific Heat Capacities of Gases - Exercises [Page 79]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 5 Specific Heat Capacities of Gases
Exercises | Q 23 | Page 79

RELATED QUESTIONS

While gas from a cooking gas cylinder is used, the pressure does not fall appreciably till the last few minutes. Why?


A gas is kept in a rigid cubical container. If a load of 10 kg is put on the top of the container, does the pressure increase?


If it were possible for a gas in a container to reach the temperature 0 K, its pressure would be zero. Would the molecules not collide with the walls? Would they not transfer momentum to the walls?


The pressure of a gas kept in an isothermal container is 200 kPa. If half the gas is removed from it, the pressure will be


Equal masses of air are sealed in two vessels, one of volume V0 and the other of volume 2V0. If the first vessel is maintained at a temperature 300 K and the other at 600 K, find the ratio of the pressures in the two vessels.

Use R = 8.31 JK-1 mol-1


2 g of hydrogen is sealed in a vessel of volume 0.02 m3 and is maintained at 300 K. Calculate the pressure in the vessel.

Use R=8.3J K-1 mol-1


Air is pumped into an automobile tyre's tube up to a pressure of 200 kPa in the morning when the air temperature is 20°C. During the day the temperature rises to 40°C and the tube expands by 2%. Calculate the pressure of the air in the tube at this temperature.


An air bubble of radius 2.0 mm is formed at the bottom of a 3.3 m deep river. Calculate the radius of the bubble as it comes to the surface. Atmospheric pressure = 1.0 × 105 Pa and density of water = 1000 kg m−3.


A vessel contains 1.60 g of oxygen and 2.80 g of nitrogen. The temperature is maintained at 300 K and the volume of the vessel is 0.166 m3. Find the pressure of the mixture.

Use R = 8.3 J K-1 mol-1


A container of volume 50 cc contains air (mean molecular weight = 28.8 g) and is open to atmosphere where the pressure is 100 kPa. The container is kept in a bath containing melting ice (0°C). (a) Find the mass of the air in the container when thermal equilibrium is reached. (b) The container is now placed in another bath containing boiling water (100°C). Find the mass of air in the container. (c) The container is now closed and placed in the melting-ice bath. Find the pressure of the air when thermal equilibrium is reached.

Use R = 8.3 J K-1 mol-1


A vessel of volume V0 contains an ideal gas at pressure p0 and temperature T. Gas is continuously pumped out of this vessel at a constant volume-rate dV/dt = r keeping the temperature constant. The pressure of the gas being taken out equals the pressure inside the vessel. Find (a) the pressure of the gas as a function of time, (b) the time taken before half the original gas is pumped out.

Use R = 8.3 J K−1 mol−1


The initial pressure and volume of a given mass of a gas (Cp/Cv = γ) are p0 and V0. The gas can exchange heat with the surrounding. (a) It is slowly compressed to a volume V0/2 and then suddenly compressed to V0/4. Find the final pressure. (b) If the gas is suddenly compressed from the volume V0 to V0/2 and then slowly compressed to V0/4, what will be the final pressure?


A barometer tube is 80 cm long (above the mercury reservoir). It reads 76 cm on a particular day. A small amount of water is introduced in the tube and the reading drops to 75.4 cm. Find the relative humidity in the space above the mercury column if the saturation vapour pressure at the room temperature is 1.0 cm.


A barometer correctly reads the atmospheric pressure as 76 cm of mercury. Water droplets are slowly introduced into the barometer tube by a dropper. The height of the mercury column first decreases and then becomes constant. If the saturation vapour pressure at the atmospheric temperature is 0.80 cm of mercury, find the height of the mercury column when it reaches its minimum value.


On a winter day, the outside temperature is 0°C and relative humidity 40%. The air from outside comes into a room and is heated to 20°C. What is the relative humidity in the room? The saturation vapour pressure at 0°C is 4.6 mm of mercury and at 20°C it is 18 mm of mercury.


The temperature and the relative humidity are 300 K and 20% in a room of volume 50 m3. The floor is washed with water, 500 g of water sticking on the floor. Assuming no communication with the surrounding, find the relative humidity when the floor dries. The changes in temperature and pressure may be neglected. Saturation vapour pressure at 300 K = 3.3 kPa.

Use R = 8.31 J K-1 mol-1


A bucket full of water is placed in a room at 15°C with initial relative humidity 40%. The volume of the room is 50 m3. (a) How much water will evaporate? (b) If the room temperature is increased by 5°C, how much more water will evaporate? The saturation vapour pressure of water at 15°C and 20°C are 1.6 kPa and 2.4 kPa respectively.

Use R = 8.3 J K-1 mol-1


A cuboidal container having dimensions 2 m × 1.5 m × 0.5 m holds a mixture of 12 g of He, 36 g of Ar, and 20 g of Ne, If the container is maintained at 300 K, Find the pressure exerted by the mixture (given MHe = 4, MAr = 40, MNe = 20). 


In a cubical box of volume V, there are N molecules of a gas moving randomly. If m is mass of each molecule and v2 is the mean square of x component of the velocity of molecules, then the pressure of the gas is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×