English
Karnataka Board PUCPUC Science Class 11

Apply the First Law of Thermodynamics to a Resistor Carrying a Current I. Identify Which of the Quantities ∆Q, ∆U and ∆W Are Zero, Positive and Negative. - Physics

Advertisements
Advertisements

Question

Apply the first law of thermodynamics to a resistor carrying a current i. Identify which of the quantities ∆Q, ∆U and ∆W are zero, positive and negative.

Short Note

Solution

The battery is doing positive work on a resistor carrying current i. Thus, ∆W is positive. The work done on the resistor is used to increase its thermal energy; thus ∆Q is positive. As the temperature of the resistor rises, ∆U is positive.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Thermal and Chemical Effects of Current - Short Answers [Page 217]

APPEARS IN

HC Verma Concepts of Physics Vol. 2 [English] Class 11 and 12
Chapter 11 Thermal and Chemical Effects of Current
Short Answers | Q 4 | Page 217

RELATED QUESTIONS

Two cells of emfs 1.5 V and 2.0 V,  having internal resistances 0.2 Ω and 0.3 Ω, respectively, are connected in parallel. Calculate the emf and internal resistance of the equivalent cell.


A battery of emf 12 V and internal resistance 2 Ω is connected to a 4 Ω resistor as shown in the figure.

(a) Show that a voltmeter when placed across the cell and across the resistor, in turn, gives the same reading.

(b) To record the voltage and the current in the circuit, why is voltmeter placed in parallel and ammeter in series in the circuit?


Distinguish between emf and terminal voltage of a cell.


Six lead-acid types of secondary cells each of emf 2.0 V and internal resistance 0.015 Ω are joined in series to provide a supply to a resistance of 8.5 Ω. What are the current drawn from the supply and its terminal voltage?


In a potentiometer arrangement for determining the emf of a cell, the balance point of the cell in open circuit is 350 cm. When a resistance of 9 Ω is used in the external circuit of the cell, the balance point shifts to 300 cm. Determine the internal resistance of the cell.


Plot a graph showing variation of voltage vs the current drawn from the cell. How can one get information from this plot about the emf of the cell and its internal resistance?


A cell of emf ‘E’ and internal resistance ‘r’ draws a current ‘I’. Write the relation between terminal voltage ‘V’ in terms of E, I and r ?


Two identical cells, each of emf E, having negligible internal resistance, are connected in parallel with each other across an external resistance R. What is the current through this resistance?


Can the potential difference across a battery be greater than its emf?


Find the value of i1/i2 in the following figure if (a) R = 0.1 Ω (b) R = 1 Ω and (c) R = 10 Ω. Note from your answers that in order to get more current from a combination of two batteries, they should be joined in parallel if the external resistance is small and in series if the external resistance is large, compared to the internal resistance.


A plate of area 10 cm2 is to be electroplated with copper (density 9000 kg m−3) to a thickness of 10 micrometres on both sides, using a cell of 12 V. Calculate the energy spent by the cell in the process of deposition. If this energy is used to heat 100 g of water, calculate the rise in the temperature of the water. ECE of copper = 3 × 10−7 kg C−1and specific heat capacity of water = 4200 J kg−1.


A conductor of length 'l' is rotated about one of its ends at a constant angular speed 'ω' in a plane perpendicular to a uniform magnetic field B. Plot graphs to show variations of the emf induced across the ends of the conductor with (i) angular speed ω and (ii) length of the conductor l.


Two cells of emfs approximately 5 V and 10 V are to be accurately compared using a potentiometer of length 400 cm.


An energy source will supply a constant current into the load if its internal resistance is ______.

A cell having an emf E and internal resistance r is connected across a variable external resistance R. As the resistance R is increased, the plot of potential difference V across R is given by ______.


Two batteries of emf ε1 and ε22 > ε1) and internal resistances r1 and r2 respectively are connected in parallel as shown in figure.


A cell of emf E and internal resistance r is connected across an external resistance R. Plot a graph showing the variation of P.D. across R, versus R.


A block of metal is heated directly by dissipating power in the internal resistance of block. Because of temperature rise, the resistance increases exponentially with time and is given by R(t) = 0.5 e2t, where t is in second. The block is connected across a 110 V source and dissipates 7644 J heat energy over a certain period of time. This period of time is ______ × 10-1 sec (take ln 0.367 = -1).


An ac generator generates an emf which is given by e = 311 sin (240 πt) V. Calculate:

  1. frequency of the emf.
  2. r.m.s. value of the emf.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×